An Open-Loop Stackelberg Strategy for the Linear Quadratic Mean-Field Stochastic Differential Game

2019 ◽  
Vol 64 (1) ◽  
pp. 97-110 ◽  
Author(s):  
Yaning Lin ◽  
Xiushan Jiang ◽  
Weihai Zhang
2020 ◽  
Vol 26 ◽  
pp. 41
Author(s):  
Tianxiao Wang

This article is concerned with linear quadratic optimal control problems of mean-field stochastic differential equations (MF-SDE) with deterministic coefficients. To treat the time inconsistency of the optimal control problems, linear closed-loop equilibrium strategies are introduced and characterized by variational approach. Our developed methodology drops the delicate convergence procedures in Yong [Trans. Amer. Math. Soc. 369 (2017) 5467–5523]. When the MF-SDE reduces to SDE, our Riccati system coincides with the analogue in Yong [Trans. Amer. Math. Soc. 369 (2017) 5467–5523]. However, these two systems are in general different from each other due to the conditional mean-field terms in the MF-SDE. Eventually, the comparisons with pre-committed optimal strategies, open-loop equilibrium strategies are given in details.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Kehan Si ◽  
Zhen Wu

AbstractThis paper studies a controlled backward-forward linear-quadratic-Gaussian (LQG) large population system in Stackelberg games. The leader agent is of backward state and follower agents are of forward state. The leader agent is dominating as its state enters those of follower agents. On the other hand, the state-average of all follower agents affects the cost functional of the leader agent. In reality, the leader and the followers may represent two typical types of participants involved in market price formation: the supplier and producers. This differs from standard MFG literature and is mainly due to the Stackelberg structure here. By variational analysis, the consistency condition system can be represented by some fully-coupled backward-forward stochastic differential equations (BFSDEs) with high dimensional block structure in an open-loop sense. Next, we discuss the well-posedness of such a BFSDE system by virtue of the contraction mapping method. Consequently, we obtain the decentralized strategies for the leader and follower agents which are proved to satisfy the ε-Nash equilibrium property.


2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Kai Du ◽  
Zhen Wu

This paper is concerned with a new kind of Stackelberg differential game of mean-field backward stochastic differential equations (MF-BSDEs). By means of four Riccati equations (REs), the follower first solves a backward mean-field stochastic LQ optimal control problem and gets the corresponding open-loop optimal control with the feedback representation. Then the leader turns to solve an optimization problem for a 1×2 mean-field forward-backward stochastic differential system. In virtue of some high-dimensional and complicated REs, we obtain the open-loop Stackelberg equilibrium, and it admits a state feedback representation. Finally, as applications, a class of stochastic pension fund optimization problems which can be viewed as a special case of our formulation is studied and the open-loop Stackelberg strategy is obtained.


Sign in / Sign up

Export Citation Format

Share Document