Accurate Power Sharing and Voltage Regulation for AC Microgrids: An Event-Triggered Coordinated Control Approach

2021 ◽  
pp. 1-11
Author(s):  
Dazhong Ma ◽  
Menglin Liu ◽  
Huaguang Zhang ◽  
Rui Wang ◽  
Xiangpeng Xie
2021 ◽  
Author(s):  
Deming Xu ◽  
Ze Li ◽  
Guozeng Cui ◽  
Wanjun Hao ◽  
Fuyuan Hu

Abstract The secondary cooperative control problem of an islanded microgrid through event-triggered mechanism is investigated in this paper. A distributed fixedtime secondary cooperative control strategy is proposed to obtain frequency and voltage magnitude secondary restoration, and also a proportional active power sharing under an undirected topology. We consider a centralized event-triggered mechanism to alleviate the communication burden and reduce the frequency of controllers update. Through this mechanism, the distributed fixed-time control protocols using frequency, voltage magnitude and active power sampling measurement values of distributed generations (DGs) only when the predefined event-triggered condition is satisfied. Compared with the conventional distributed asymptotic control protocols under period-triggered communication, the secondary control objectives of an islanded microgrid are achieved within a fixed settling time by applying the presented distributed fixed-time control approach, and the upper bound of settling time is unrelated to any initial states. Meanwhile, the presented centralized event-triggered communication method exhibits excellent performance in alleviating communication burden and promoting control efficiency. The theoretical proof is given by adopting Lyapunov method. The simulation studies are conducted to illustrate the effectiveness of the proposed control scheme.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6490
Author(s):  
Muhammad Zahid Khan ◽  
Chaoxu Mu ◽  
Salman Habib ◽  
Khurram Hashmi ◽  
Emad M. Ahmed ◽  
...  

This paper presents an optimal control scheme for an islanded microgrid (MG), which performs reactive power-sharing and voltage regulation. Two-fold objectives are achieved, i.e., the load estimation strategy, firstly, approximates the MG’s impedance and transmits this information through a communication link. Based on approximated impedance information, an optimal regulator is then constructed to send optimal control commands to respective local power controllers of each distributed generation unit. An optimal regulator is a constraints optimized problem, mainly responsible to restore the buses’ voltage magnitudes and realize power-sharing proportionally. The important aspect of this control approach is that the voltage magnitude information is only required to be transferred to each inverter’s controller. In parallel, a secondary control layer for frequency restoration is implemented to minimize the system frequency deviations. The MATLAB/Simulink and experimental results obtained under load disturbances show the effectiveness for optimizing the voltage and power. Modeling and analysis are also verified through stability analysis using system-wide mathematical small-signal models.


Sign in / Sign up

Export Citation Format

Share Document