The Impact of Fin Number on Device Performance and Reliability for Multi-Fin Tri-Gate n- and p-Type FinFET

2018 ◽  
Vol 18 (4) ◽  
pp. 555-560 ◽  
Author(s):  
Wen-Kuan Yeh ◽  
Wenqi Zhang ◽  
Po-Ying Chen ◽  
Yi-Lin Yang
Keyword(s):  
P Type ◽  
Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6098
Author(s):  
Gwen Rolland ◽  
Christophe Rodriguez ◽  
Guillaume Gommé ◽  
Abderrahim Boucherif ◽  
Ahmed Chakroun ◽  
...  

In this paper is presented a Normally-OFF GaN HEMT (High Electron Mobility Transistor) device using p-doped GaN barrier layer regrown by CBE (Chemical Beam Epitaxy). The impact of the p doping on the device performance is investigated using TCAD simulator (Silvaco/Atlas). With 4E17 cm−3 p doping, a Vth of 1.5 V is achieved. Four terminal breakdowns of the fabricated device are investigated, and the origin of the device failure is identified.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Min Kim ◽  
Antonio Alfano ◽  
Giovanni Perotto ◽  
Michele Serri ◽  
Nicola Dengo ◽  
...  

AbstractCommercialization of lead halide perovskite-based devices is hindered by their instability towards environmental conditions. In particular, water promotes fast decomposition, leading to a drastic decrease in device performance. Integrating water-splitting active species within ancillary layers to the perovskite absorber might be a solution to this, as they could convert incoming water into oxygen and hydrogen, preserving device performance. Here, we suggest that a CuSCN nanoplatelete/p-type semiconducting polymer composite, combining hole extraction and transport properties with water oxidation activity, transforms incoming water molecules and triggers the in situ p-doping of the conjugated polymer, improving transport of photocharges. Insertion of the nanocomposite into a lead perovskite solar cell with a direct photovoltaic architecture causes stable device performance for 28 days in high-moisture conditions. Our findings demonstrate that the engineering of a hole extraction layer with possible water-splitting additives could be a viable strategy to reduce the impact of moisture in perovskite devices.


2001 ◽  
Vol 664 ◽  
Author(s):  
C. Y. Wang ◽  
E. H. Lim ◽  
H. Liu ◽  
J. L. Sudijono ◽  
T. C. Ang ◽  
...  

ABSTRACTIn this paper the impact of the ESL (Etch Stop layer) nitride on the device performance especially the threshold voltage (Vt) has been studied. From SIMS analysis, it is found that different nitride gives different H concentration, [H] in the Gate oxide area, the higher [H] in the nitride film, the higher H in the Gate Oxide area and the lower the threshold voltage. It is also found that using TiSi instead of CoSi can help to stop the H from diffusing into Gate Oxide/channel area, resulting in a smaller threshold voltage drift for the device employed TiSi. Study to control the [H] in the nitride film is also carried out. In this paper, RBS, HFS and FTIR are used to analyze the composition changes of the SiN films prepared using Plasma enhanced Chemical Vapor deposition (PECVD), Rapid Thermal Chemical Vapor Deposition (RTCVD) with different process parameters. Gas flow ratio, RF power and temperature are found to be the key factors that affect the composition and the H concentration in the film. It is found that the nearer the SiN composition to stoichiometric Si3N4, the lower the [H] in SiN film because there is no excess silicon or nitrogen to be bonded with H. However the lowest [H] in the SiN film is limited by temperature. The higher the process temperature the lower the [H] can be obtained in the SiN film and the nearer the composition to stoichiometric Si3N4.


2013 ◽  
Vol 440 ◽  
pp. 82-87 ◽  
Author(s):  
Mohammad Jahangir Alam ◽  
Mohammad Ziaur Rahman

A comparative study has been made to analyze the impact of interstitial iron in minority carrier lifetime of multicrystalline silicon (mc-Si). It is shown that iron plays a negative role and is considered very detrimental for minority carrier recombination lifetime. The analytical results of this study are aligned with the spatially resolved imaging analysis of iron rich mc-Si.


2021 ◽  
Author(s):  
Zhihai Sun ◽  
Jiaxi Liu ◽  
Ying Zhang ◽  
Ziyuan Li ◽  
Leyu Peng ◽  
...  

Abstract Van der Waals (VDW) heterostructures have attracted significant research interest due to their tunable interfacial properties and potential in a wide range of applications such as electronics, optoelectronic, and heterocatalysis. In this work, the impact of interfacial defects on the electronic structures and photocatalytic properties of hBN/MX2(M = Mo, W, and X = S, Se) are studied using density functional theory calculations. The results reveal that the band alignment of hBN/MX2 can be adjusted by introducing vacancies and atomic doping. The type-I band alignment of the host structure was maintained in the heterostructure with n-type doping in the hBN sublayer. Interestingly, the band alignment changed to the type-II heterostructrue as VB defect and p-type doping was introduced in the hBN sublayer. This could be profitable for the separation of photo-generated electron−hole pairs at the interfaces and is highly desired for heterostructure photocatalysis. In addition, two Z-type heterostructures including hBN(BeB)/MoS2, hBN(BeB)/MoSe2, and hBN(VN)/MoSe2 were achieved, showing reducing band gap and ideal redox potential for water splitting. Our results reveal the possibility of engineering the interfacial and photocatalysis properties of hBN/MX2 heterostructures via interfacial defects.


2015 ◽  
Vol 24 (04) ◽  
pp. 1550053
Author(s):  
Lobna I'msaddak ◽  
Dalenda Ben Issa ◽  
Abdennaceur Kachouri ◽  
Mounir Samet ◽  
Hekmet Samet

This paper presents the design of C-CNTFET oscillator's arrays for infrared 'IR' technology. These arrays are contained by both of the LC-tank and the voltage control 'coupled N- and P-type C-CNTFET LC-tank' oscillators. In this paper, the analysis of the impact of CNT diameter variations and the nonlinear capacitances (C GD and C GS ) were introduced, especially on propagation time, oscillation frequency and power consumption. The C-CNTFET inverter, ring oscillator, LC-tank and coupled N- and P-type C-CNTFET LC-tank oscillator structures were designed and their speeding and performances have been investigated with the proposed n-type of C-CNTFET model supplied by a 0.5 V power voltage. Simulation results show that the n- and p-types LC-tank oscillator circuit designs achieved an approximately equal oscillation frequency, response time and power consumption. Whereas the coupled N- and P-type C-CNTFET LC-tank oscillator has the lowest power consumption equal to 0.13 μW, the highest oscillation frequency (10.08 THz) and the fastest response time (1.81 ps).


2015 ◽  
Vol 3 (34) ◽  
pp. 8804-8809 ◽  
Author(s):  
Afzaal Qamar ◽  
Hoang-Phuong Phan ◽  
Jisheng Han ◽  
Philip Tanner ◽  
Toan Dinh ◽  
...  

This communication reports for the first time, the impact of device geometry on the stress-dependent offset voltage of single crystal p-type 3C–SiC four terminal devices.


Sign in / Sign up

Export Citation Format

Share Document