Implementation and characterization of the double-gate mosfet using lateral solid-phase epitaxy

2003 ◽  
Vol 50 (6) ◽  
pp. 1552-1555 ◽  
Author(s):  
Haitao Liu ◽  
Zhibin Xiong ◽  
J.K.O. Sin
1985 ◽  
Vol 56 ◽  
Author(s):  
B.D. HUNT ◽  
N. LEWIS ◽  
E.L. HALL ◽  
L.G. JTURNER ◽  
L.J. SCHOWALTER ◽  
...  

AbstractThin (<200Å), epitaxial CoSi2 films have been grown on (111) Siwafers in a UHV system using a variety of growth techniques including solid phase epitaxy (SPE), reactive deposition epitaxy (RDE), and molecular beam epitaxy (MBE). SEN and TEN studies reveal significant variations in the epitaxial silicide surface morphology as a function of the sillciqd formation method. Pinhole densities are generally greater than 107 cm-2, although some reduction can be achieved by utilizing proper growth techniques. Si epilayers were deposited over the CoSi2 films inthe temperature range from 550ºC to 800ºC, and the reesuulttinng structures have been characterized using SEM, cross—sectional TEN, and ion channeling measurements. These measurements show that the Si epitaxial quality increases with growth temperature, although the average Si surface roughness and the CoSi2 pinhole density also increase as the growth temperature is raised.


1992 ◽  
Vol 56-58 ◽  
pp. 444-448 ◽  
Author(s):  
F. Scarinci ◽  
S. Lagomarsino ◽  
C. Giannini ◽  
G. Savelli ◽  
P. Castrucci ◽  
...  

2011 ◽  
Vol 110 (10) ◽  
pp. 102205 ◽  
Author(s):  
J. Wollschläger ◽  
C. Deiter ◽  
C. R. Wang ◽  
B. H. Müller ◽  
K. R. Hofmann

1989 ◽  
Vol 160 ◽  
Author(s):  
B.J. Robinson ◽  
B.T. Chilton ◽  
P. Ferret ◽  
D.A. Thompson

AbstractSingle strained layer structures of up to 30 nm of Si1-xGex. on (100) Si and capped with 30-36 nm of Si have been amorphized by implantation with 120 keV As . The amorphized region, extending to a depth of 130 nm, has been regrown by solid phase epitaxy (SPE) at 600°C. Characterization of the regrown structure by Rutherford backscattering/channeling techniques and transmission electron microscopy indicates that for x < 0.18 the SPE process results in the recovery of strain, while for x > 0.18 there is increasing strain relaxation and a deterioration of crystal quality.


1984 ◽  
Vol 33 ◽  
Author(s):  
P.K. Vasudev ◽  
D.C. Mayer

ABSTRACTComplementary Metal-Oxide-Semiconductor (CMOS) devices and circuits with minimum feature sizes of about 1 μm were fabricated in 0.5-μm-thick epitaxial Silicon-On-Sapphire (SOS) films. The films were modified by ion implantation and subsequent solid phase recrystallization processes which reduced the total microtwin concentrations in the Si layers by more than a hundredfold, while increasing electron and hole channel mobilities between 40 to 50%. Leakage currents were reduced by over 2 orders of magnitude, while drive currents and subthreshold slopes showed significant improvements over as–grown SOS films. Propagation delays of less than 80 psec were obtained for CMOS/SOS inverters with Leff = 0.6 μm.


1999 ◽  
Vol 564 ◽  
Author(s):  
Xin-Ping Qu ◽  
Guo-Ping Ru ◽  
Bing-Zong Li ◽  
C. Detavernier ◽  
R L. Van Meirhaeghe ◽  
...  

AbstractUltra-thin epitaxial CoSi2 films formed by Co(3∼5nm)/Ti(1 nm)/Si(100) and Co(3∼5nm)/Si(lnm)/Ti(Inm)/Si are studied. The multilayers are deposited by ion-beam sputtering. Rapid thermal annealing (RTA) is used for silicidation. XRD, RBS, TEM, AFM, four-point probe, I-V and C-V measurements are carried out for characterization. The XRD spectra show the CoSi2 film formed by Co/Ti/Si or Co/Si/Ti/Si solid phase epitaxy has, epitaxial characteristic. XTEM shows that the film is continuous. RBS/Channeling shows that the formed CoSi2 has sharp interface with a minimum channeling yield of Co signal of 40%. AFM shows that the surface of ultra-thin CoSi2 film is smooth with a roughness of nearly 0.7 nm. The Rs∼T relationship shows that the CoSi2 films formed by Co/Si/Ti/Si reaction have the best thermal stability (stable up to 900°C). Those formed by Co/Ti/Si reaction are stable up to 850°C, while those formed by Co/Si reaction are only stable up to 750°C. By fitting the experimental I-V and C-V curves of the epitaxial CoSi2/Si Schottky diodes, barrier heights of around 0.6 eV and close to unity ideality factors are obtained.


Sign in / Sign up

Export Citation Format

Share Document