Seamless GPS/Inertial Navigation System Based on Self-Learning Square-Root Cubature Kalman Filter

2021 ◽  
Vol 68 (1) ◽  
pp. 499-508 ◽  
Author(s):  
Chong Shen ◽  
Yu Zhang ◽  
Xiaoting Guo ◽  
Xiyuan Chen ◽  
Huiliang Cao ◽  
...  
Author(s):  
Yuan Xu ◽  
Xiyuan Chen

Accurate position information of the pedestrians is required in many applications such as healthcare, entertainment industries, and military field. In this work, an online Cubature Kalman filter Rauch–Tung–Striebel smoothing algorithm for people’s location in indoor environment is proposed using inertial navigation system techniques with ultrawideband technology. In this algorithm, Cubature Kalman filter is employed to improve the filtering output accuracy; then, the Rauch–Tung–Striebel smoothing is used between the ultrawideband measurements updates; finally, the average value of the corrected inertial navigation system error estimation is output to compensate the inertial navigation system position error. Moreover, a real indoor test has been done for assessing the performance of the proposed model and algorithm. Test results show that the proposed model is able to reduce the sum of the absolute position error between the east direction and the north direction by about 32% compared with only the ultrawideband model, and the performance of the online Cubature Kalman filter Rauch–Tung–Striebel smoothing algorithm is slightly better than the off-line mode.


2012 ◽  
Vol 245 ◽  
pp. 323-329 ◽  
Author(s):  
Muhammad Ushaq ◽  
Jian Cheng Fang

Inertial navigation systems exhibit position errors that tend to grow with time in an unbounded mode. This degradation is due, in part, to errors in the initialization of the inertial measurement unit and inertial sensor imperfections such as accelerometer biases and gyroscope drifts. Mitigation to this growth and bounding the errors is to update the inertial navigation system periodically with external position (and/or velocity, attitude) fixes. The synergistic effect is obtained through external measurements updating the inertial navigation system using Kalman filter algorithm. It is a natural requirement that the inertial data and data from the external aids be combined in an optimal and efficient manner. In this paper an efficient method for integration of Strapdown Inertia Navigation System (SINS), Global Positioning System (GPS) and Doppler radar is presented using a centralized linear Kalman filter by treating vector measurements with uncorrelated errors as scalars. Two main advantages have been obtained with this improved scheme. First is the reduced computation time as the number of arithmetic computation required for processing a vector as successive scalar measurements is significantly less than the corresponding number of operations for vector measurement processing. Second advantage is the improved numerical accuracy as avoiding matrix inversion in the implementation of covariance equations improves the robustness of the covariance computations against round off errors.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Lijun Song ◽  
Zhongxing Duan ◽  
Bo He ◽  
Zhe Li

The centralized Kalman filter is always applied in the velocity and attitude matching of Transfer Alignment (TA). But the centralized Kalman has many disadvantages, such as large amount of calculation, poor real-time performance, and low reliability. In the paper, the federal Kalman filter (FKF) based on neural networks is used in the velocity and attitude matching of TA, the Kalman filter is adjusted by the neural networks in the two subfilters, the federal filter is used to fuse the information of the two subfilters, and the global suboptimal state estimation is obtained. The result of simulation shows that the federal Kalman filter based on neural networks is better in estimating the initial attitude misalignment angle of inertial navigation system (INS) when the system dynamic model and noise statistics characteristics of inertial navigation system are unclear, and the estimation error is smaller and the accuracy is higher.


Author(s):  
Mahdi Fathi ◽  
Nematollah Ghahramani ◽  
Mohammad Ali Shahi Ashtiani ◽  
Ali Mohammadi ◽  
Mohsen Fallah

Sign in / Sign up

Export Citation Format

Share Document