Model-Order Reduction of Large-Scale State-Space Models in Fusion Machines via Krylov Methods

2017 ◽  
Vol 53 (6) ◽  
pp. 1-4 ◽  
Author(s):  
Matteo Bonotto ◽  
Paolo Bettini ◽  
Angelo Cenedese
2013 ◽  
Vol 14 (3) ◽  
pp. 639-663 ◽  
Author(s):  
Xiaoda Pan ◽  
Hengliang Zhu ◽  
Fan Yang ◽  
Xuan Zeng

AbstractDespite the efficiency of trajectory piecewise-linear (TPWL) model order reduction (MOR) for nonlinear circuits, it needs large amount of expansion points for large-scale nonlinear circuits. This will inevitably increase the model size as well as the simulation time of the resulting reduced macromodels. In this paper, subspace TPWL-MOR approach is developed for the model order reduction of nonlinear circuits. By breaking the high-dimensional state space into several subspaces with much lower dimensions, the subspace TPWL-MOR has very promising advantages of reducing the number of expansion points as well as increasing the effective region of the reduced-order model in the state space. As a result, the model size and the accuracy of the TWPL model can be greatly improved. The numerical results have shown dramatic reduction in the model size as well as the improvement in accuracy by using the subspace TPWL-MOR compared with the conventional TPWL-MOR approach.


Author(s):  
Rishabh Singhal ◽  
Yashonidhi Srivastava ◽  
Shini Agarwal ◽  
Abhimanyu Kumar ◽  
Souvik Ganguli

2017 ◽  
Vol 59 (1) ◽  
pp. 115-133
Author(s):  
K. MOHAMED ◽  
A. MEHDI ◽  
M. ABDELKADER

We present a new iterative model order reduction method for large-scale linear time-invariant dynamical systems, based on a combined singular value decomposition–adaptive-order rational Arnoldi (SVD-AORA) approach. This method is an extension of the SVD-rational Krylov method. It is based on two-sided projections: the SVD side depends on the observability Gramian by the resolution of the Lyapunov equation, and the Krylov side is generated by the adaptive-order rational Arnoldi based on moment matching. The use of the SVD provides stability for the reduced system, and the use of the AORA method provides numerical efficiency and a relative lower computation complexity. The reduced model obtained is asymptotically stable and minimizes the error ($H_{2}$and$H_{\infty }$) between the original and the reduced system. Two examples are given to study the performance of the proposed approach.


Author(s):  
Jérôme Guillet ◽  
Benjamin Mourllion ◽  
Abderazik Birouche ◽  
Michel Basset

Extracting second-order structures from single-input state-space models: Application to model order reductionThis paper focuses on the model order reduction problem of second-order form models. The aim is to provide a reduction procedure which guarantees the preservation of the physical structural conditions of second-order form models. To solve this problem, a new approach has been developed to transform a second-order form model from a state-space realization which ensures the preservation of the structural conditions. This new approach is designed for controllable single-input state-space realizations with real matrices and has been applied to reduce a single-input second-order form model by balanced truncation and modal truncation.


Sign in / Sign up

Export Citation Format

Share Document