Current Distribution of a Cylindrical Antenna in a Warm Plasma

1981 ◽  
Vol 9 (2) ◽  
pp. 52-57
Author(s):  
H. C. Hsieh
1967 ◽  
Vol 45 (12) ◽  
pp. 4019-4038 ◽  
Author(s):  
Edmund K. Miller

A numerical investigation of the admittance of an infinite, circular cylindrical antenna excited at a circumferential gap of nonzero thickness, and immersed in a lossy incompressible magnetoplasma with the antenna parallel to the static magnetic field is described. A concentric free-space layer (the vacuum sheath) which separates the antenna from the external uniform plasma is included in the analysis to approximate the positive ion sheath which may form about a body at floating potential in a warm plasma. The numerical results for the antenna admittance show that: (1) in the absence of a sheath, a sharp admittance maximum is found at the electron cyclotron frequency, with the maximum more pronounced when the plasma frequency exceeds the cyclotron frequency than for the converse case; (2) the vacuum sheath shifts upward in frequency and reduces in amplitude the admittance maximum which occurs for the sheathless case at the cyclotron frequency; (3) a kink or minimum in the admittance is found at the plasma frequency.


Sign in / Sign up

Export Citation Format

Share Document