scholarly journals Factors involved in the stability of isolated β-sheets: Turn sequence, β-sheet twisting, and hydrophobic surface burial

2004 ◽  
Vol 13 (4) ◽  
pp. 1134-1147 ◽  
Author(s):  
Clara M. Santiveri ◽  
Jorge Santoro ◽  
Manuel Rico ◽  
M. Angeles Jiménez
2014 ◽  
Vol 56 ◽  
pp. 1-10 ◽  
Author(s):  
Louise Serpell

Amyloid fibrils are formed by numerous proteins and peptides that share little sequence homology. The structures formed are highly ordered and extremely stable, being composed of β-sheet structure and stabilized along their length by hydrogen bonding. The fibrils are formed by several protofilaments that wind around one another in rope-like structures, lending further strength and stability to the resulting fibres. The fact that so many proteins and peptides form amyloid structures under suitable conditions, seems to suggest that the sequence of the precursor is unimportant. However, it is now clear that side chains play a central role in forming interactions between several β-sheets to further stabilize and regulate the structures. The primary sequence plays a central role in determining the rate of fibril formation, the stability of the resulting structure to degradation and the final morphology of the fibrils. The side chains regulate the elongation and growth, and also the lateral association of the protofilament and fibrils, having a significant impact on the final architecture.


2020 ◽  
Author(s):  
Ryan Weber ◽  
Martin McCullagh

<p>pH-switchable, self-assembling materials are of interest in biological imaging and sensing applications. Here we propose that combining the pH-switchability of RXDX (X=Ala, Val, Leu, Ile, Phe) peptides and the optical properties of coumarin creates an ideal candidate for these materials. This suggestion is tested with a thorough set of all-atom molecular dynamics simulations. We first investigate the dependence of pH-switchabiliy on the identity of the hydrophobic residue, X, in the bare (RXDX)<sub>4</sub> systems. Increasing the hydrophobicity stabilizes the fiber which, in turn, reduces the pH-switchabilty of the system. This behavior is found to be somewhat transferable to systems in which a single hydrophobic residue is replaced with a coumarin containing amino acid. In this case, conjugates with X=Ala are found to be unstable and both pHs while conjugates with X=Val, Leu, Ile and Phe are found to form stable β-sheets at least at neutral pH. The (RFDF)<sub>4</sub>-coumarin conjugate is found to have the largest relative entropy value of 0.884 +/- 0.001 between neutral and acidic coumarin ordering distributions. Thus, we posit that coumarin-(RFDF)<sub>4</sub> containing peptide sequences are ideal candidates for pH-sensing bioelectronic materials.</p>


2001 ◽  
Vol 360 (3) ◽  
pp. 539-548 ◽  
Author(s):  
Allan M. TORRES ◽  
R. Manjunatha KINI ◽  
Nirthanan SELVANAYAGAM ◽  
Philip W. KUCHEL

A high-resolution solution structure of bucandin, a neurotoxin from Malayan krait (Bungarus candidus), was determined by 1H-NMR spectroscopy and molecular dynamics. The average backbone root-mean-square deviation for the 20 calculated structures and the mean structure is 0.47 Å (1 Å = 0.1nm) for all residues and 0.24 Å for the well-defined region that spans residues 23–58. Secondary-structural elements include two antiparallel β-sheets characterized by two and four strands. According to recent X-ray analysis, bucandin adopts a typical three-finger loop motif and yet it has some peculiar characteristics that set it apart from other common α-neurotoxins. The presence of a fourth strand in the second antiparallel β-sheet had not been observed before in three-finger toxins, and this feature was well represented in the NMR structure. Although the overall fold of the NMR structure is similar to that of the X-ray crystal structure, there are significant differences between the two structures that have implications for the pharmacological action of the toxin. These include the extent of the β-sheets, the conformation of the region spanning residues 42–49 and the orientation of some side chains. In comparison with the X-ray structure, the NMR structure shows that the hydrophobic side chains of Trp27 and Trp36 are stacked together and are orientated towards the tip of the middle loop. The NMR study also showed that the two-stranded β-sheet incorporated in the first loop, as defined by residues 1–22, and the C-terminus from Asn59, is probably flexible relative to the rest of the molecule. On the basis of the dispositions of the hydrophobic and hydrophilic side chains, the structure of bucandin is clearly different from those of cytotoxins.


2003 ◽  
Vol 326 (2) ◽  
pp. 553-568 ◽  
Author(s):  
Faisal A. Syud ◽  
Heather E. Stanger ◽  
Heather Schenck Mortell ◽  
Juan F. Espinosa ◽  
John D. Fisk ◽  
...  
Keyword(s):  

2011 ◽  
Vol 123 (37) ◽  
pp. 8894-8897 ◽  
Author(s):  
Felix Freire ◽  
Aaron M. Almeida ◽  
John D. Fisk ◽  
Jay D. Steinkruger ◽  
Samuel H. Gellman

2000 ◽  
Vol 83 (06) ◽  
pp. 896-901 ◽  
Author(s):  
Guang-Chao Sui ◽  
Björn Wiman

SummaryWe have investigated the B β-sheet in PAI-1 regarding its role for the stability of the molecule. The residues from His219 to Tyr241 (except for Gly230 and Pro240), covering the s2B and s3B strands, and in addition His185 and His190 were substituted by amino acids with opposite properties. The 23 generated single-site changed mutants and also wild type PAI-1 (wtPAI-1) were expressed in E. coli. Subsequently they were purified by heparin-Sepharose and anhydrotrypsin agarose affinity chromatographies. The stability of the purified PAI-1 variants was analyzed at 37° C and at different pHs (5.5, 6.5 or 7.5). At pH 7.5 and 37° C, single substitutions of the residues in the central portions of both strands 2 and 3 in the B β-sheet (Ile223 to Leu226 on s2B and Met235 to Ile237 on s3B), caused a significant decrease in stability, yielding half-lives of about 10–25% as compared to wtPAI-1. On the other hand, mutations at both sides of the central portion of the B β-sheet (Tyr221, Asp222, Tyr228 and Thr232) frequently resulted in an increased PAI-1 stability (up to 7-fold). While wtPAI-1 exhibited prolonged half-lives at pH 6.5 and 5.5, the PAI-1 variant Y228S was more stable at neutral pH (half-life of 9.6 h at pH 7.5) as compared to its half-life at pH 5.5 (1.1 h). One of the 4 modified histidine residues (His229) resulted in a variant with a clearly affected stability as a function of pH, suggesting that it may, at least in part, be of importance for the pH dependence of the PAI-1 stability. Thus, our data demonstrate that the B β-sheet is of great importance for the stability of the molecule. Modifications in this part causes decreased or increased stability in a certain pattern, suggesting effects on the insertion rate of the reactive center loop into the A β-sheet of the molecule.


Molecules ◽  
2019 ◽  
Vol 24 (10) ◽  
pp. 1983 ◽  
Author(s):  
Jennifer M. Urban ◽  
Janson Ho ◽  
Gavin Piester ◽  
Riqiang Fu ◽  
Bradley L. Nilsson

In 1953, Pauling and Corey predicted that enantiomeric β-sheet peptides would coassemble into so-called “rippled” β-sheets, in which the β-sheets would consist of alternating l- and d-peptides. To date, this phenomenon has been investigated primarily with amphipathic peptide sequences composed of alternating hydrophilic and hydrophobic amino acid residues. Here, we show that enantiomers of a fragment of the amyloid-β (Aβ) peptide that does not follow this sequence pattern, amyloid-β (16–22), readily coassembles into rippled β-sheets. Equimolar mixtures of enantiomeric amyloid-β (16–22) peptides assemble into supramolecular structures that exhibit distinct morphologies from those observed by self-assembly of the single enantiomer pleated β-sheet fibrils. Formation of rippled β-sheets composed of alternating l- and d-amyloid-β (16–22) is confirmed by isotope-edited infrared spectroscopy and solid-state NMR spectroscopy. Sedimentation analysis reveals that rippled β-sheet formation by l- and d-amyloid-β (16–22) is energetically favorable relative to self-assembly into corresponding pleated β-sheets. This work illustrates that coassembly of enantiomeric β-sheet peptides into rippled β-sheets is not limited to peptides with alternating hydrophobic/hydrophilic sequence patterns, but that a broader range of sequence space is available for the design and preparation of rippled β-sheet materials.


Microbiology ◽  
2011 ◽  
Vol 157 (9) ◽  
pp. 2694-2701 ◽  
Author(s):  
Zhenzhen Quan ◽  
Stephen G. Oliver ◽  
Nianshu Zhang

A group of JmjC domain-containing proteins also harbour JmjN domains. Although the JmjC domain is known to possess histone demethylase activity, the function of the JmjN domain remains largely undetermined. Previously, we have demonstrated that the yeast Gis1 transcription factor, bearing both JmjN and JmjC domains at its N terminus, is subject to proteasome-mediated selective proteolysis to downregulate its transcription activation ability. Here, we reveal that the JmjN and JmjC domains interact with each other through two β-sheets, one in each domain. Removal of either or both β-strands or the entire JmjN domain leads to complete degradation of Gis1, mediated partially by the proteasome. Mutating the core residues essential for histone demethylase activity demonstrated for other JmjC-containing proteins or deleting both Jumonji domains enhances the transcription activity of Gis1, but has no impact on its selective proteolysis by the proteasome. Together, these data suggest that JmjN and JmjC interact physically to form a structural unit that ensures the stability and appropriate transcription activity of Gis1.


1997 ◽  
Vol 51 (4) ◽  
pp. 536-540 ◽  
Author(s):  
Nelson L. Sefara ◽  
Noel P. Magtoto ◽  
Hugh H. Richardson

Two-dimensional (2D) FT-IR correlation analysis was applied to both the mid-IR (MIR) and near-IR (NIR) regions to investigate changes in the secondary structures of β-lactoglobulin in D2O (or H2O) solvent systems consisting of varying concentrations of bromoethanol. Mid-IR correlation spectra indicate that the amide I bands corresponding to different structures (i.e., α-helical structures at 1650 cm−1, aggregated β-strands at 1620 cm−1, and β-sheet at 1636 cm−1) exhibit apparently different spectral response towards varying concentrations of bromoethanol. We propose that the mechanism for the conversion of the β-sheet into α-helix occurs in terms of two parallel pathways, i.e., (1) β-sheets → aggregated β-strands →α-helix, and (2) β-sheets →α-helix. Although the amide B/amide II combination bands give no spectral features relating to the secondary structure, changes were found in the C–H combination bands that suggest an interaction between the solvent and the protein.


Sign in / Sign up

Export Citation Format

Share Document