scholarly journals Cover Image: Coxiella burnetii encodes an LvgA‐related protein important for intracellular replication (Cellular Microbiology 06/2021)

2021 ◽  
Vol 23 (6) ◽  
Author(s):  
Samuel Steiner ◽  
Amit Meir ◽  
Craig R. Roy
Author(s):  
Julian Pechstein ◽  
Jan Schulze-Luehrmann ◽  
Stephanie Bisle ◽  
Franck Cantet ◽  
Paul A. Beare ◽  
...  

2014 ◽  
Vol 83 (2) ◽  
pp. 661-670 ◽  
Author(s):  
Charles L. Larson ◽  
Paul A. Beare ◽  
Daniel E. Voth ◽  
Dale Howe ◽  
Diane C. Cockrell ◽  
...  

The intracellular bacterial pathogenCoxiella burnetiidirects biogenesis of a parasitophorous vacuole (PV) that acquires host endolysosomal components. Formation of a PV that supportsC. burnetiireplication requires a Dot/Icm type 4B secretion system (T4BSS) that delivers bacterial effector proteins into the host cell cytosol. Thus, a subset of T4BSS effectors are presumed to direct PV biogenesis. Recently, the PV-localized effector protein CvpA was found to promoteC. burnetiiintracellular growth and PV expansion. We predict additionalC. burnetiieffectors localize to the PV membrane and regulate eukaryotic vesicle trafficking events that promote pathogen growth. To identify these vacuolar effector proteins, a list of predictedC. burnetiiT4BSS substrates was compiled using bioinformatic criteria, such as the presence of eukaryote-like coiled-coil domains. Adenylate cyclase translocation assays revealed 13 proteins were secreted in a Dot/Icm-dependent fashion byC. burnetiiduring infection of human THP-1 macrophages. Four of the Dot/Icm substrates, termedCoxiellavacuolarprotein B (CvpB), CvpC, CvpD, and CvpE, labeled the PV membrane and LAMP1-positive vesicles when ectopically expressed as fluorescently tagged fusion proteins.C. burnetiiΔcvpB, ΔcvpC, ΔcvpD, and ΔcvpEmutants exhibited significant defects in intracellular replication and PV formation. Genetic complementation of the ΔcvpDand ΔcvpEmutants rescued intracellular growth and PV generation, whereas the growth ofC. burnetiiΔcvpBand ΔcvpCwas rescued upon cohabitation with wild-type bacteria in a common PV. Collectively, these data indicateC. burnetiiencodes multiple effector proteins that target the PV membrane and benefit pathogen replication in human macrophages.


2020 ◽  
Vol 295 (21) ◽  
pp. 7391-7403 ◽  
Author(s):  
Eric Martinez ◽  
Sylvaine Huc-Brandt ◽  
Solène Brelle ◽  
Julie Allombert ◽  
Franck Cantet ◽  
...  

The intracellular bacterial pathogen Coxiella burnetii is the etiological agent of the emerging zoonosis Q fever. Crucial to its pathogenesis is type 4b secretion system–mediated secretion of bacterial effectors into host cells that subvert host cell membrane trafficking, leading to the biogenesis of a parasitophorous vacuole for intracellular replication. The characterization of prokaryotic serine/threonine protein kinases in bacterial pathogens is emerging as an important strategy to better understand host–pathogen interactions. In this study, we investigated CstK (for Coxiella Ser/Thr kinase), a protein kinase identified in C. burnetii by in silico analysis. We demonstrate that this putative protein kinase undergoes autophosphorylation on Thr and Tyr residues and phosphorylates a classical eukaryotic protein kinase substrate in vitro. This dual Thr-Tyr kinase activity is also observed for a eukaryotic dual-specificity Tyr phosphorylation-regulated kinase class. We found that CstK is translocated during infections and localizes to Coxiella-containing vacuoles (CCVs). Moreover, a CstK-overexpressing C. burnetii strain displayed a severe CCV development phenotype, suggesting that CstK fine-tunes CCV biogenesis during the infection. Protein–protein interaction experiments identified the Rab7 GTPase-activating protein TBC1D5 as a candidate CstK-specific target, suggesting a role for this host GTPase-activating protein in Coxiella infections. Indeed, CstK co-localized with TBC1D5 in noninfected cells, and TBC1D5 was recruited to CCVs in infected cells. Accordingly, TBC1D5 depletion from infected cells significantly affected CCV development. Our results indicate that CstK functions as a bacterial effector protein that interacts with the host protein TBC1D5 during vacuole biogenesis and intracellular replication.


2017 ◽  
Vol 16 (4) ◽  
pp. 622-641 ◽  
Author(s):  
Johanna Schmölders ◽  
Christian Manske ◽  
Andreas Otto ◽  
Christine Hoffmann ◽  
Bernhard Steiner ◽  
...  

2017 ◽  
Vol 85 (5) ◽  
Author(s):  
Laura F. Fielden ◽  
Jennifer H. Moffatt ◽  
Yilin Kang ◽  
Michael J. Baker ◽  
Chen Ai Khoo ◽  
...  

ABSTRACT Coxiella burnetii, the causative agent of Q fever, establishes a unique lysosome-derived intracellular niche termed the Coxiella-containing vacuole (CCV). The Dot/Icm-type IVB secretion system is essential for the biogenesis of the CCV and the intracellular replication of Coxiella. Effector proteins, translocated into the host cell through this apparatus, act to modulate host trafficking and signaling processes to facilitate CCV development. Here we investigated the role of CBU0077, a conserved Coxiella effector that had previously been observed to localize to lysosomal membranes. CBU0077 was dispensable for the intracellular replication of Coxiella in HeLa and THP-1 cells and did not appear to participate in CCV biogenesis. Intriguingly, native and epitope-tagged CBU0077 produced by Coxiella displayed specific punctate localization at host cell mitochondria. As such, we designated CBU0077 MceA (mitochondrial C oxiella effector protein A). Analysis of ectopically expressed MceA truncations revealed that the capacity to traffic to mitochondria is encoded within the first 84 amino acids of this protein. MceA is farnesylated by the host cell; however, this does not impact mitochondrial localization. Examination of mitochondria isolated from infected cells revealed that MceA is specifically integrated into the mitochondrial outer membrane and forms a complex of approximately 120 kDa. Engineering Coxiella to express either MceA tagged with 3×FLAG or MceA tagged with 2×hemagglutinin allowed us to perform immunoprecipitation experiments that showed that MceA forms a homo-oligomeric species at the mitochondrial outer membrane during infection. This research reveals that mitochondria are a bona fide target of Coxiella effectors and MceA is a complex-forming effector at the mitochondrial outer membrane during Coxiella infection.


2020 ◽  
Vol 88 (6) ◽  
Author(s):  
Miku Kuba ◽  
Nitika Neha ◽  
Patrice Newton ◽  
Yi Wei Lee ◽  
Vicki Bennett-Wood ◽  
...  

ABSTRACT The zoonotic bacterial pathogen Coxiella burnetii is the causative agent of Q fever, a febrile illness which can cause a serious chronic infection. C. burnetii is a unique intracellular bacterium which replicates within host lysosome-derived vacuoles. The ability of C. burnetii to replicate within this normally hostile compartment is dependent on the activity of the Dot/Icm type 4B secretion system. In a previous study, a transposon mutagenesis screen suggested that the disruption of the gene encoding the novel protein CBU2072 rendered C. burnetii incapable of intracellular replication. This protein, subsequently named EirA (essential for intracellular replication A), is indispensable for intracellular replication and virulence, as demonstrated by infection of human cell lines and in vivo infection of Galleria mellonella. The putative N-terminal signal peptide is essential for protein function but is not required for localization of EirA to the bacterial inner membrane compartment and axenic culture supernatant. In the absence of EirA, C. burnetii remains viable but nonreplicative within the host phagolysosome, as coinfection with C. burnetii expressing native EirA rescues the replicative defect in the mutant strain. In addition, while the bacterial ultrastructure appears to be intact, there is an altered metabolic profile shift in the absence of EirA, suggesting that EirA may impact overall metabolism. Most strikingly, in the absence of EirA, Dot/Icm effector translocation was inhibited even when EirA-deficient C. burnetii replicated in the wild type (WT)-supported Coxiella containing vacuoles. EirA may therefore have a novel role in the control of Dot/Icm activity and represent an important new therapeutic target.


2019 ◽  
Vol 476 (19) ◽  
pp. 2851-2867 ◽  
Author(s):  
Miku Kuba ◽  
Nitika Neha ◽  
David P. De Souza ◽  
Saravanan Dayalan ◽  
Joshua P. M. Newson ◽  
...  

Abstract Coxiella burnetii is a Gram-negative bacterium which causes Q fever, a complex and life-threatening infection with both acute and chronic presentations. C. burnetii invades a variety of host cell types and replicates within a unique vacuole derived from the host cell lysosome. In order to understand how C. burnetii survives within this intracellular niche, we have investigated the carbon metabolism of both intracellular and axenically cultivated bacteria. Both bacterial populations were shown to assimilate exogenous [13C]glucose or [13C]glutamate, with concomitant labeling of intermediates in glycolysis and gluconeogenesis, and in the TCA cycle. Significantly, the two populations displayed metabolic pathway profiles reflective of the nutrient availabilities within their propagated environments. Disruption of the C. burnetii glucose transporter, CBU0265, by transposon mutagenesis led to a significant decrease in [13C]glucose utilization but did not abolish glucose usage, suggesting that C. burnetii express additional hexose transporters which may be able to compensate for the loss of CBU0265. This was supported by intracellular infection of human cells and in vivo studies in the insect model showing loss of CBU0265 had no impact on intracellular replication or virulence. Using this mutagenesis and [13C]glucose labeling approach, we identified a second glucose transporter, CBU0347, the disruption of which also showed significant decreases in 13C-label incorporation but did not impact intracellular replication or virulence. Together, these analyses indicate that C. burnetii may use multiple carbon sources in vivo and exhibits greater metabolic flexibility than expected.


2016 ◽  
Vol 12 (12) ◽  
pp. e1006101 ◽  
Author(s):  
Eleanor A. Latomanski ◽  
Patrice Newton ◽  
Chen Ai Khoo ◽  
Hayley J. Newton

Sign in / Sign up

Export Citation Format

Share Document