scholarly journals Shear wave velocity variation across the Taupo Volcanic Zone, New Zealand, from receiver function inversion

2004 ◽  
Vol 159 (1) ◽  
pp. 291-310 ◽  
Author(s):  
S. Bannister ◽  
C. J. Bryan ◽  
H. M. Bibby
2019 ◽  
Vol 221 (1) ◽  
pp. 97-114
Author(s):  
F Civilini ◽  
M K Savage ◽  
J Townend

SUMMARY Fluid injection for geothermal production has the potential to produce subsidence and microseismicity that can incur heavy financial cost or hazard. Due to this, novel ways to monitor subsurface deformation to supplement existing methods are highly sought after. We use seismic ambient noise to obtain time-dependent measurements of shear velocity within the geothermal reservoirs of Rotokawa and Ngatamariki, two producing geothermal fields in the Taupō Volcanic Zone located in the central North Island of New Zealand and operated by Mercury Energy. We investigate the relationship between shear wave velocity changes and geothermal injection by selecting time periods at the fields when injection and production volumes were significantly altered: 2009–2010 at Rotokawa, when geothermal injection was quadrupled due to the start-up of a new power station, and 2012–2013 at Ngatamariki, the beginning of geothermal injection for electricity production at that field. Shear wave velocity changes are computed from the ambient noise cross-correlation coda using the Moving Window Cross-Spectral (MWCS) technique, with a reference stack encompassing all data prior to the change in injection rate and moving stacks of 10–50 d. Gradual positive and negative shear velocity changes with a periodicity of approximately 12 months were observed at both sites, with maximum amplitude of 0.06 ± 0.04 and –0.08 ± 0.03 per cent at Rotokawa and 0.07 ± 0.03 and –0.06 ± 0.02 per cent at Ngatamariki. We hypothesize that these changes are due to seasonal rainfall, as seismic velocities computed by ambient noise are sensitive to the filling and emptying of near-surface pore space. In addition to these gradual responses, we found several sharp negative changes in velocity that reach minimum values over a few days and then gradually equilibrate to prior values over a few weeks. The amplitude of these responses is between –0.03 and –0.07 per cent and coincides with regional and local earthquakes. We hypothesize that these responses are primarily produced by the creation of new fractures, the same mechanism that produces gradual groundwater level decreases at regional distances from earthquake epicentres. We analyse a periodic signal within the time-delay measurements and determine that it is at least in part caused by the MWCS window size smoothing the cross-coherence of the ambient seismic signal. We do not observe shear wave velocity changes coinciding with geothermal injection, which may suggest that the signal has lower amplitude compared to the seasonal and seismic responses. We use bandstop filters and polynomial curve fitting to remove the contribution of the seasonal signal, but see no evidence of a shear wave velocity response due to geothermal fluid injection.


1992 ◽  
Vol 29 (4) ◽  
pp. 558-568 ◽  
Author(s):  
K. O. Addo ◽  
P. K. Robertson

A modified version of the spectral analysis of surface waves (SASW) equipment and analysis procedure has been developed to determine in situ shear-wave velocity variation with depth from the ground surface. A microcomputer has been programmed to acquire waveform data and perform the relevant spectral analyses that were previously done by signal analyzers. Experimental dispersion for Rayleigh waves is now obtainable at a site and inverted with a fast algorithm for dispersion computation. Matching experimental and theoretical dispersion curves has been automated in an optimization routine that does not require intermittent operator intervention or experience in dispersion computation. Shear-wave velocity profiles measured by this procedure are compared with results from independent seismic cone penetration tests for selected sites in western Canada. Key words : surface wave, dispersion, inversion, optimization, shear-wave velocity.


2018 ◽  
Vol 34 (3) ◽  
pp. 1065-1089 ◽  
Author(s):  
Michael R. Deschenes ◽  
Clinton M. Wood ◽  
Liam M. Wotherspoon ◽  
Brendon A. Bradley ◽  
Ethan Thomson

Deep (typically > 1,000 m) shear wave velocity ( V S) profiles were developed across the Canterbury region of New Zealand at nine strong-motion stations using a combination of active and passive surface wave methods. A multimode, multimethod joint inversion process, which included Rayleigh and Love wave dispersion and horizontal-to-vertical spectral ratio data, was used to develop the V S profiles at each site. A priori geologic information was used in defining preliminary constraints on the complex geologic layering of the deep basin underlying the region, including velocity reversals in locations where interbedded terrestrial gravels and marine sediments are present. Shear wave profiles developed as part of this study had characteristics comparable to the profiles from 14 Christchurch sites detailed in a separate study. The profiles developed in the two studies were combined to form region-specific V S profiles for typical deposits, which can be used to improve the accuracy of current three-dimensional (3-D) crustal velocity models of the region.


Sign in / Sign up

Export Citation Format

Share Document