pannonian basin
Recently Published Documents


TOTAL DOCUMENTS

802
(FIVE YEARS 233)

H-INDEX

47
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Albert Ruman ◽  
Anna Ruman

Abstract The Köppen–Geiger climate classification is used to determine climate types in region of Pannonian Basin with data from the sixth phase of the Coupled Model Intercomparison Project. The study covers a period from years 2021 until 2100, and it shows how certain climate types are changing in percentage in thirty-year averages for six periods. In the period 1960-1990 years of the last century, the dominant climate type was warm summer humid continental climate (Dfb) with 98% presences in the region. The results show that the change of this climate type to the humid subtropical climate type (Cfa) began in the first half of the 21st century. The complete dominance of humid subtropical climate type in the most areas of the Pannonian Basin characterized the second half of the 21st century. Also, results show creation of a warm summer Mediterranean climate type (Csa), which according to certain simulations, is present from 10% to 30% on average in the region. In the central part of the region, a cold desert climate type (Bsk) was formed with approximately 6% presences in the region. This creation of climate types in some parts of the region shows that in the second half of 21st century drier and a warmer climate is expected compared to the last century.


2021 ◽  
Vol 51 (4) ◽  
pp. 391-402
Author(s):  
Gyula MENTES ◽  
Ladislav BRIMICH ◽  
Martin BEDNÁRIK ◽  
Jozef BÓDI

Two extensometer stations have been set up at the margin of the Pannonian Basin to monitor tectonic movements as well as Earth tides and related phenomena. Because the Sopronbánfalva Geodynamic Observatory (SGO) in Hungary and the Vyhne Tidal Station (VTS) in Slovakia are located in different geological, topographic, and tectonic environments, the analysis and comparison of the extensometer data measured here provides a useful opportunity to interpret the observed data. The tectonic deformation at the SGO shows an average contraction of: −2.94 μstr y−1 (1 μstr is 10−6 relative deformation) which can be explained by the uplift of the Alps and the anticlockwise motion of the Adria microplate, causing compression in the Eastern Alps. At the VTS an average compression of −14.8 nstr y−1 (1 nstr is 10−9 relative deformation) was measured which can be explained by the NW compression direction in this area. The measured deformations in both observatories show a good agreement with the results of GPS measurements. The deformation at the VTS is characterized by small dilatation anomalies caused by the different topographic, tectonic environment and probably by the high heat flow in the area of the station. At this station the calculated amplitude factors for O1, P1, K1, M2 are 1.01482, 1.21691, 0.83173, 1.09392 and the ocean load corrected values are 1.10817, 1.35717, 0.92809, 1.28812, respectively. At the SGO the calculated amplitude factors for the same tidal components are 0.58776, 0.38967, 0.41548, 1.00564 and the ocean load corrected values are 0.98893, 1.89117, 1.00430, 1.04962, respectively. These results show that the effect of the ocean tide loading is greater at Sopronbánfalva, than at Vyhne. Based on the comparison, we can say that the result of the local strain measurement can be considered realistic.


2021 ◽  
Vol 151 (4) ◽  
pp. 335-361
Author(s):  
Dániel Botka ◽  
Nóra Rofrics ◽  
Lajos Katona ◽  
Imre Magyar

As the almost 200-year palaeontological research revealed, the geographical distribution of various fossil mollusk faunas in deposits of the late Neogene Lake Pannon displays a regular pattern. The lake basin was filled by lateral accretion of sediments, resulting in condensed sedimentary successions in the distal parts of the basin and successively younger shallow-water deposits from the margins towards the basin center. Exposed intra-basin basement highs, however, broke this strict pattern when they acted as sediment sources during the lake’s lifetime. The Mecsek Mts in southern Hungary was such an island in Lake Pannon during the early late Miocene. Deposition of the 200 m thick Sarmatian–Pannonian sedimentary succession in Pécs-Danitzpuszta at the foot of the Mecsek Mts was thus controlled by local tectonic and sedimentary processes, resulting in a unique succession of facies and mollusk faunas. A typical, restricted marine Sarmatian fauna is followed by a distinct freshwater or oligohaline interval, which, according to micropalaeontological evidence, still belongs to the Sarmatian. Although poor preservation of fossils does not allow firm conclusions, it seems that freshwater Sarmatian snails were the ancestors of the brackish-water-adapted early Pannonian pulmonate snail taxa. The successive “Sarmatian-type” dwarfed cockle fauna is similar to those widely reported from the Sarmatian–Pannonian boundary in various parts of the Pannonian Basin; however, a thorough taxonomic study of its species is still lacking. The bulk of the sedimentary succession corresponds to the sublittoral to profundal “white marls,” which are widespread in the southern Pannonian Basin. In Croatia and Serbia, they are divided into the Lymnocardium praeponticum or Radix croatica Zone (11.6–11.4 Ma) below, and the Congeria banatica Zone (11.4–9.7 Ma) above; this division can be applied to the Pécs-Danitzpuszta succession as well. Sedimentation of the calcareous marl, however, ceased at Pécs-Danitzpuszta at about 10.5–10.2 Ma ago (during the younger part of the Lymnocardium schedelianum Chron), when silt was deposited with a diverse sublittoral mollusk fauna. Similar faunas are known from the Vienna Basin, southern Banat, and other marginal parts of the Pannonian Basin System, but not from Croatia and Serbia, where deposition of the deep-water white marls continued during this time. Finally, the Pécs-Danitzpuszta succession was capped with a thick, coarse-grained sand series that contains mollusk molds and casts representing a typical littoral assemblage. This littoral fauna is well-known from easternmost Austria, northern Serbia, and northwestern Romania, but never directly from above the sublittoral L. schedelianum Zone. The fauna is characteristic for the upper part of the Lymnocardium conjungens Zone and has an inferred age of ca. 10.2–10.0 Ma. The Pécs-Danitzpuszta succession thus allows to establish the chronostratigraphic relationship between mollusk faunas that have not been observed in one succession nor in close proximity to each other in other parts of the Pannonian Basin.


2021 ◽  
Vol 151 (3) ◽  
pp. 235-252
Author(s):  
Krisztina Sebe ◽  
Gyula Konrád ◽  
Orsolya Sztanó

The Pécs-Danitzpuszta sand pit is the most important outcrop of the oldest Pannonian (upper Miocene, Tortonian) deposits in southern Hungary. A trench excavated in 2018 exposed Lake Pannon deposits and underlying Paratethys strata down to the upper Badenian (Serravallian), and together with the sand pit they make up a continuous sedimentary succession with a true thickness of ~220 metres. Due to tectonic deformation, middle Miocene deposits and carbonates in the lowermost Pannonian are overturned. Layers become vertical close to the marl-sand boundary, then the dip changes to normal, with continuously decreasing dip angles. The exposed succession starts with 5 m of upper Badenian (13.8-12.6 Ma old) calcareous marls and sandy limestones with sublittoral, then littoral molluscs, which were deposited in the normal salinity seawaters of the Central Paratethys. The overlying 8 m of sand, silt, sandy breccia and conglomerate are fossil-free,; only the lowermost silt layer contains reworked Badenian microfauna. This unit probably accumulated from gravity-driven flows in a fan-like, probably terrestrial depositional setting. The next 7.5 m of frequently alternating thin-bedded limestones, marls and clays with sublittoral biota represent rapid transgression. Foraminifers, ostracods, molluscs and calcareous nannoplankton indicate late Sarmatian, then Pannonian age for this interval. However, the locations of the boundaries indicated by the various groups are not are not consistent, making the position of the Sarmatian/Pannonian boundary uncertain. The Sarmatian beds with marine fossils still accumulated in the Paratethys, between ~12.1–11.6 Ma, under varying salinities due among others to temporary freshwater input. The Pannonian strata already represent sediments of the brackish Lake Pannon. Above these beds, uniform calcareous marl becomes dominant with some clay layers and graded or structureless conglomerate to sandstone interbeds. The deposition of the overall 64- m- thick Pannonian calcareous marl section took place in the open, probably few -hundred -metres -deep water of the lake between ~11.62 and 10.5–10.2 Ma. It may represent a rare, well-exposed surface occurrence of the Endrőd Formation which is known from thousands of wells in the Pannonian Basin. Above this section, a 6-7 -m- thick transitional interval of silty marls and sands is followed by ~140 m of limonitic, pebbly sands. They have poor to moderate sorting and rounding, metre -thick beds with transitional boundaries and abundant fossils and clasts reworked from older Miocene units. Their accumulation took place between 10.2-10.5 and 9.6 Ma by gravity flows connected to deep-water portions of fan deltas.


2021 ◽  
Vol 151 (4) ◽  
pp. 363-409
Author(s):  
Márton Szabó ◽  
László Kocsis ◽  
Mariann Bosnakoff ◽  
Krisztina Sebe

Chondrichthyans and osteichthyans are widely reported from marine sediments of the Central Paratethys, not only by sporadic occurrences, but also by complex, diverse fish assemblages. Here we present a rich fish fauna from the upper Miocene (Pannonian, Tortonian) lacustrine sediments exposed in the Pécs-Danitzpuszta sand pit, in the SW Pannonian Basin. Altogether 22 227 specimens were investigated, and they could be classified into 17 chondrichthyan and 16 osteichthyan taxa. Among the chondrichthyans Odontaspididae (55.51%) and Myliobatidae (14.4%) are the most abundant, while the bony fishes are dominated by the Sparidae (77.07%). The limonitic, yellow, coarse-grained, gravelly sands yielded an extremely large amount of isolated fish fossils. A considerable part of the vertebrate material of the sands is likely reworked from older, middle Miocene (Badenian and Sarmatian, i.e. Langhian and Serravallian) sediments. The late Miocene calcareous marls underlying the sands also yielded a variety of fish remains. From these remains, associated and articulated latid bones are coeval with the sediment and suggest freshwater and brackish conditions in the area, in accord with other biotic data. Other, isolated fossils, namely teeth, otoliths, cycloid scales and jaw elements of Gadidae, Gobiidae, Sparidae and Latidae could be reworked and thus have a very limited paleoecological significance. Based on habitat preferences of extant relatives, all chondrichthyans and most osteichthyan taxa found in the sands must be of Badenian origin. The abundant remains allow for some conclusions on the environmental conditions during the Badenian. They refer to a shallow, coastal environment with tropical-subtropical climate with connection to more open water habitats. Remains of some osteichthyan taxa were found in coprolites, showing that these taxa were part of the food chain as prey items. Sirenian ribs and odontocete limb bones bearing tooth marks refer to trophic relations between marine mammals and large sized macropredatory sharks. The Pécs-Danitzpuszta record of shark-attributed bite marks on bones of marine mammals is the second of the Badenian of the Central Paratethys. Acipenserids and latids of the sands, linked to brackish and/or freshwater environments, could originate from any Miocene stratigraphic units.


2021 ◽  
Vol 13 (23) ◽  
pp. 13355
Author(s):  
Tanja Micić Ponjiger ◽  
Tin Lukić ◽  
Biljana Basarin ◽  
Maja Jokić ◽  
Robert L. Wilby ◽  
...  

Estimation of rainfall erosivity (RE) and erosivity density (ED) is essential for understanding the complex relationships between hydrological and soil erosion processes. The main objective of this study is to assess the spatial–temporal trends and variability of the RE and ED in the central and southern Pannonian Basin by using station observations and gridded datasets. To assess RE and ED, precipitation data for 14 meteorological stations, 225 grid points. and an erosion model consisting of daily, monthly, seasonal, and annual rainfall for the period of 1961–2014 were used. Annual RE and ED based on station data match spatially variable patterns of precipitation, with higher values in the southwest (2100 MJ·mm·ha−1·h−1) and southeast (1650 MJ·mm·ha−1·h−1) of the study area, but minimal values in the northern part (700 MJ·mm·ha−1·h−1). On the other hand, gridded datasets display more detailed RE and ED spatial–temporal variability, with the values ranging from 250 to 2800 MJ·mm·ha−1·h−1. The identified trends are showing increasing values of RE (ranging between 0.20 and 21.17 MJ·mm·ha−1·h−1) and ED (ranging between 0.01 and 0.03 MJ·ha−1·h−1) at the annual level. This tendency is also observed for autumn RE (from 5.55 to 0.37 MJ·mm·ha−1·h−1) and ED (from 0.05 to 0.01 MJ·ha−1·h−1), as for spring RE (from 1.00 to 0.01 MJ·mm·ha−1·h−1) and ED (from 0.04 to 0.01 MJ·ha−1·h−1), due to the influence of the large-scale processes of climate variability, with North Atlantic Oscillation (NAO) being the most prominent. These increases may cause a transition to a higher erosive class in the future, thus raising concerns about this type of hydro-meteorological hazard in this part of the Pannonian Basin. The present analysis identifies seasons and places of greatest erosion risk, which is the starting point for implementing suitable mitigation measures at local to regional scales.


2021 ◽  
Vol 584 ◽  
pp. 120536
Author(s):  
Dóra Cseresznyés ◽  
György Czuppon ◽  
Csilla Király ◽  
Attila Demény ◽  
Domokos Györe ◽  
...  

Solid Earth ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 2633-2669 ◽  
Author(s):  
Mark R. Handy ◽  
Stefan M. Schmid ◽  
Marcel Paffrath ◽  
Wolfgang Friederich ◽  

Abstract. Based on recent results of AlpArray, we propose a new model of Alpine collision that involves subduction and detachment of thick (∼ 180 km) European lithosphere. Our approach combines teleseismic P-wave tomography and existing local earthquake tomography (LET), allowing us to image the Alpine slabs and their connections with the overlying orogenic lithosphere at an unprecedented resolution. The images call into question the conventional notion that downward-moving lithosphere and slabs comprise only seismically fast lithosphere. We propose that the European lithosphere is heterogeneous, locally containing layered positive and negative Vp anomalies of up to 5 %–6 %. We attribute this layered heterogeneity to seismic anisotropy and/or compositional differences inherited from the Variscan and pre-Variscan orogenic cycles rather than to thermal anomalies. The lithosphere–asthenosphere boundary (LAB) of the European Plate therefore lies below the conventionally defined seismological LAB. In contrast, the lithosphere of the Adriatic Plate is thinner and has a lower boundary approximately at the base of strong positive Vp anomalies at 100–120 km. Horizontal and vertical tomographic slices reveal that beneath the central and western Alps, the European slab dips steeply to the south and southeast and is only locally still attached to the Alpine lithosphere. However, in the eastern Alps and Carpathians, this slab is completely detached from the orogenic crust and dips steeply to the north to northeast. This along-strike change in attachment coincides with an abrupt decrease in Moho depth below the Tauern Window, the Moho being underlain by a pronounced negative Vp anomaly that reaches eastward into the Pannonian Basin area. This negative Vp anomaly is interpreted as representing hot upwelling asthenosphere that heated the overlying crust, allowing it to accommodate Neogene orogen-parallel lateral extrusion and thinning of the ALCAPA tectonic unit (upper plate crustal edifice of Alps and Carpathians) to the east. A European origin of the northward-dipping, detached slab segment beneath the eastern Alps is likely since its down-dip length matches estimated Tertiary shortening in the eastern Alps accommodated by originally south-dipping subduction of European lithosphere. A slab anomaly beneath the Dinarides is of Adriatic origin and dips to the northeast. There is no evidence that this slab dips beneath the Alps. The slab anomaly beneath the Northern Apennines, also of Adriatic origin, hangs subvertically and is detached from the Apenninic orogenic crust and foreland. Except for its northernmost segment where it locally overlies the southern end of the European slab of the Alps, this slab is clearly separated from the latter by a broad zone of low Vp velocities located south of the Alpine slab beneath the Po Basin. Considered as a whole, the slabs of the Alpine chain are interpreted as highly attenuated, largely detached sheets of continental margin and Alpine Tethyan oceanic lithosphere that locally reach down to a slab graveyard in the mantle transition zone (MTZ).


Check List ◽  
2021 ◽  
Vol 17 (6) ◽  
pp. 1601-1608
Author(s):  
Pavol Purgat ◽  
Peter Gajdoš ◽  
Adrián Purkart ◽  
Natália Hurajtová ◽  
Ľubomír Volnár ◽  
...  

The spiders Walckenaeria stylifrons (O. Pickard-Cambridge, 1875) and Spiracme mongolica (Schenkel, 1963) are reported from Slovakia for the first time. These new records are based on adult males found in Western Slovakia in xerothermic habitats. The occurrence of W. stylifrons in Slovakia fills the gap in its distribution in Pannonian Basin and between Austria and Ukraine. Spiracme mongolica has been known only from the Balkans and south-eastern part of Europe to central Asia, this is the first record for Central Europe. We suggest Spiracme mongolica (Schenkel, 1963) new combination for Xysticus mongolicus Schenkel, 1963. Characteristic features, photographs of habitus and copulatory organs, and habitats of the new records are presented. 


Sign in / Sign up

Export Citation Format

Share Document