scholarly journals 2-D acoustic Laplace-domain waveform inversion of marine field data

2012 ◽  
Vol 190 (1) ◽  
pp. 421-428 ◽  
Author(s):  
Wansoo Ha ◽  
Wookeen Chung ◽  
Eunjin Park ◽  
Changsoo Shin
2013 ◽  
Vol 170 (12) ◽  
pp. 2075-2085 ◽  
Author(s):  
Eunjin Park ◽  
Wansoo Ha ◽  
Wookeen Chung ◽  
Changsoo Shin ◽  
Dong-Joo Min

Geophysics ◽  
2012 ◽  
Vol 77 (5) ◽  
pp. R199-R206 ◽  
Author(s):  
Wansoo Ha ◽  
Changsoo Shin

The lack of the low-frequency information in field data prohibits the time- or frequency-domain waveform inversions from recovering large-scale background velocity models. On the other hand, Laplace-domain waveform inversion is less sensitive to the lack of the low frequencies than conventional inversions. In theory, frequency filtering of the seismic signal in the time domain is equivalent to a constant multiplication of the wavefield in the Laplace domain. Because the constant can be retrieved using the source estimation process, the frequency content of the seismic data does not affect the gradient direction of the Laplace-domain waveform inversion. We obtained inversion results of the frequency-filtered field data acquired in the Gulf of Mexico and two synthetic data sets obtained using a first-derivative Gaussian source wavelet and a single-frequency causal sine function. They demonstrated that Laplace-domain inversion yielded consistent results regardless of the frequency content within the seismic data.


2011 ◽  
Author(s):  
Henri Calandra ◽  
Christian Rivera ◽  
Changsoo Shin ◽  
Sukjoon Pyun ◽  
Youngseo Kim ◽  
...  

Geophysics ◽  
2019 ◽  
Vol 84 (1) ◽  
pp. R1-R10 ◽  
Author(s):  
Zhendong Zhang ◽  
Tariq Alkhalifah ◽  
Zedong Wu ◽  
Yike Liu ◽  
Bin He ◽  
...  

Full-waveform inversion (FWI) is an attractive technique due to its ability to build high-resolution velocity models. Conventional amplitude-matching FWI approaches remain challenging because the simplified computational physics used does not fully represent all wave phenomena in the earth. Because the earth is attenuating, a sample-by-sample fitting of the amplitude may not be feasible in practice. We have developed a normalized nonzero-lag crosscorrelataion-based elastic FWI algorithm to maximize the similarity of the calculated and observed data. We use the first-order elastic-wave equation to simulate the propagation of seismic waves in the earth. Our proposed objective function emphasizes the matching of the phases of the events in the calculated and observed data, and thus, it is more immune to inaccuracies in the initial model and the difference between the true and modeled physics. The normalization term can compensate the energy loss in the far offsets because of geometric spreading and avoid a bias in estimation toward extreme values in the observed data. We develop a polynomial-type weighting function and evaluate an approach to determine the optimal time lag. We use a synthetic elastic Marmousi model and the BigSky field data set to verify the effectiveness of the proposed method. To suppress the short-wavelength artifacts in the estimated S-wave velocity and noise in the field data, we apply a Laplacian regularization and a total variation constraint on the synthetic and field data examples, respectively.


2019 ◽  
Vol 11 (16) ◽  
pp. 1839
Author(s):  
Xu Meng ◽  
Sixin Liu ◽  
Yi Xu ◽  
Lei Fu

Full waveform inversion (FWI) can yield high resolution images and has been applied in Ground Penetrating Radar (GPR) for around 20 years. However, appropriate selection of the initial models is important in FWI because such an inversion is highly nonlinear. The conventional way to obtain the initial models for GPR FWI is ray-based tomogram inversion which suffers from several inherent shortcomings. In this paper, we develop a Laplace domain waveform inversion to obtain initial models for the time domain FWI. The gradient expression of the Laplace domain waveform inversion is deduced via the derivation of a logarithmic object function. Permittivity and conductivity are updated by using the conjugate gradient method. Using synthetic examples, we found that the value of the damping constant in the inversion cannot be too large or too small compared to the dominant frequency of the radar data. The synthetic examples demonstrate that the Laplace domain waveform inversion provide slightly better initial models for the time domain FWI than the ray-based inversion. Finally, we successfully applied the algorithm to one field data set, and the inverted results of the Laplace-based FWI show more details than that of the ray-based FWI.


Sign in / Sign up

Export Citation Format

Share Document