Higher Bcl-2 levels decrease staphylococcal superantigen-induced apoptosis of CD4+T cells in atopic dermatitis

Allergy ◽  
2007 ◽  
Vol 62 (5) ◽  
pp. 520-526 ◽  
Author(s):  
Y. T. Lin ◽  
C. T. Wang ◽  
J. H. Lee ◽  
C. Y. Chu ◽  
W. C. Tsao ◽  
...  
2021 ◽  
Vol 141 (5) ◽  
pp. S6
Author(s):  
G.C. Monnot ◽  
M. Wegrecki ◽  
B.N. Sallee ◽  
L.A. Bordone ◽  
C.H. Rohde ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Simon X. M. Dong ◽  
Frederick S. Vizeacoumar ◽  
Kalpana K. Bhanumathy ◽  
Nezeka Alli ◽  
Cristina Gonzalez-Lopez ◽  
...  

Abstract Background Macrophages, besides resting latently infected CD4+ T cells, constitute the predominant stable, major non-T cell HIV reservoirs. Therefore, it is essential to eliminate both latently infected CD4+ T cells and tissue macrophages to completely eradicate HIV in patients. Until now, most of the research focus is directed towards eliminating latently infected CD4+ T cells. However, few approaches have been directed at killing of HIV-infected macrophages either in vitro or in vivo. HIV infection dysregulates the expression of many host genes essential for the survival of infected cells. We postulated that exploiting this alteration may yield novel targets for the selective killing of infected macrophages. Methods We applied a pooled shRNA-based genome-wide approach by employing a lentivirus-based library of shRNAs to screen novel gene targets whose inhibition should selectively induce apoptosis in HIV-infected macrophages. Primary human MDMs were infected with HIV-eGFP and HIV-HSA viruses. Infected MDMs were transfected with siRNAs specific for the promising genes followed by analysis of apoptosis by flow cytometry using labelled Annexin-V in HIV-infected, HIV-exposed but uninfected bystander MDMs and uninfected MDMs. The results were analyzed using student’s t-test from at least four independent experiments. Results We validated 28 top hits in two independent HIV infection models. This culminated in the identification of four target genes, Cox7a2, Znf484, Cstf2t, and Cdk2, whose loss-of-function induced apoptosis preferentially in HIV-infected macrophages. Silencing these single genes killed significantly higher number of HIV-HSA-infected MDMs compared to the HIV-HSA-exposed, uninfected bystander macrophages, indicating the specificity in the killing of HIV-infected macrophages. The mechanism governing Cox7a2-mediated apoptosis of HIV-infected macrophages revealed that targeting respiratory chain complex II and IV genes also selectively induced apoptosis of HIV-infected macrophages possibly through enhanced ROS production. Conclusions We have identified above-mentioned novel genes and specifically the respiratory chain complex II and IV genes whose silencing may cause selective elimination of HIV-infected macrophages and eventually the HIV-macrophage reservoirs. The results highlight the potential of the identified genes as targets for eliminating HIV-infected macrophages in physiological environment as part of an HIV cure strategy.


1997 ◽  
Vol 185 (1) ◽  
pp. 55-64 ◽  
Author(s):  
Andrew D. Badley ◽  
David Dockrell ◽  
Margaret Simpson ◽  
Ron Schut ◽  
David H. Lynch ◽  
...  

Apoptosis of bystander uninfected CD4+ T lymphocytes by neighboring HIV-infected cells is observed in cell culture and in lymphoid tissue of HIV-infected individuals. This study addresses whether antigen-presenting cells such as human macrophages mediate apoptosis of CD4+ T cells from HIV-infected individuals. Uninfected human macrophages, and to a larger degree, HIV-infected macrophages mediate apoptosis of T cells from HIV-infected, but not from uninfected control individuals. This macrophage-dependent killing targets CD4+, but not CD8+ T lymphocytes from HIV-infected individuals, and direct contact between macrophages and lymphocytes is required. Additional analyses indicated that the apoptosis-inducing ligands, FasL and tumor necrosis factor (TNF), mediate this macrophage-induced apoptosis of CD4+ T cells. These results support a role for macrophage-associated FasL and TNF in the selective depletion of CD4+ T cells in HIV-infected individuals.


2018 ◽  
Vol 46 (1) ◽  
pp. 37-42 ◽  
Author(s):  
Miki Kurita ◽  
Yuki Yoshihara ◽  
Yozo Ishiuji ◽  
Mami Chihara ◽  
Takaoki Ishiji ◽  
...  
Keyword(s):  
T Cells ◽  
T Cell ◽  

2011 ◽  
Vol 127 (2) ◽  
pp. AB163-AB163
Author(s):  
G.N. Drannik ◽  
V.V. Driianska ◽  
A.I. Kurchenko ◽  
I.F. Kurchenko ◽  
L.M. DuBuske

1996 ◽  
Vol 183 (4) ◽  
pp. 1789-1796 ◽  
Author(s):  
G Süss ◽  
K Shortman

Dendritic cells (DC), the most efficient antigen-presenting cells, are well equipped for activation of naive CD4+ T cells by their expression of high levels of major histocompatibility complex and costimulator molecules. We now demonstrate that some DC are equally well equipped for killing these same T cells. Murine splenic DC consist of both conventional CD8alpha- DC and a major population of CD8alpha+ DC. Whereas CD8- DC induce a vigorous proliferative response in CD4 T cells, CD8+ DC induce a lesser response that is associated with marked T cell apoptosis. By using various mixtures of T cells and DC from Fas-mutant lpr/lpr mice and Fas-ligand (FasL) mutant gld/gld mice, we show this death is due to interaction of Fas on activated T cells with FasL on CD8+ DC. Furthermore, we show by direct surface staining that CD8+ DC, but not CD8- DC, express FasL at high levels. These findings indicate that FasL+ CD8+ DC are a specialized subgroup of DC with a role in the regulation of the response of primary peripheral T cells.


Sign in / Sign up

Export Citation Format

Share Document