Effects of prolonged supratentorial mass expansion on regional blood flow and cardiovascular parameters during the Cushing response

2009 ◽  
Vol 72 (3) ◽  
pp. 283-294 ◽  
Author(s):  
H. Schrader ◽  
C. Hall ◽  
N. N. Zwetnow
1985 ◽  
Vol 248 (1) ◽  
pp. H98-H108
Author(s):  
D. G. van Wylen ◽  
L. G. D'Alecy

Regional blood flow distribution (microspheres) and cardiac output (CO, thermal dilution) were measured during the Cushing response in unblocked (UB), beta-receptor-blocked (BB, 2 mg/kg propranolol iv), or alpha-receptor blocked (AB, 0.5 mg/kg + 0.5 mg X kg-1 X min-1 phentolamine iv) chloralose-anesthetized dogs. Intracranial pressure was increased to 150 mmHg by infusion of temperature-controlled artificial cerebrospinal fluid into the cisterna magna. Similar increases in mean arterial pressure were seen in UB and BB, but in AB a Cushing response could not be sustained. In UB, cerebral blood flow (CBF) decreased 50%, coronary blood flow (CoBF) increased 120%, and peripheral tissue blood flow was reduced only in the kidneys (18%) and the intestines (small 22%, large 35%). Blood flow to the other viscera, skin, and skeletal muscle was unchanged. CO (16%) and heart rate (HR, 38%) decreased, and total peripheral resistance (TPR, 68%) and stroke volume (SV, 38%) increased. In BB, CBF decreased 50%, CoBF decreased 20%, and blood flow was reduced 40-80% in all peripheral tissues. CO (69%) and HR (62%) decreased, TPR increased 366%, and SV was unchanged. We conclude that the Cushing response in UB animals combines an alpha-receptor-mediated vasoconstriction with a beta-receptor cardiac stimulation. The beta-mechanism is neither necessary nor sufficient for the hypertension. However, the combination of alpha- and beta-adrenergic mechanisms maintains cardiac output and peripheral tissue blood flow relatively constant while producing a systemic hypertension.


2001 ◽  
Vol 40 (02) ◽  
pp. 51-58 ◽  
Author(s):  
H. Schliephake ◽  
van den Hoff ◽  
W. H. Knapp ◽  
G. Berding

Summary Aim: Determination of the range of regional blood flow and fluoride influx during normal incorporation of revascularized fibula grafts used for mandibular reconstruction. Evaluation, if healing complications are preceded by typical deviations of these parameters from the normal range. Assessment of the potential influence of using “scaled population-derived” instead of “individually measured” input functions in quantitative analysis. Methods: Dynamic F-l 8-PET images and arterialized venous blood samples were obtained in 11 patients early and late after surgery. Based on kinetic modeling regional blood flow (K1) and fluoride influx (Kmlf) were determined. Results: In uncomplicated cases, early postoperative graft K1 - but not Kmlf -exceeded that of vertebrae as reference region. Kmn values obtained in graft necrosis (n = 2) were below the ranges of values observed in uncomplicated healing (0.01 13-0.0745 ml/min/ml) as well as that of the reference region (0.0154-0.0748). Knf values in mobile non-union were in the lower range - and those in rigid non-union in the upper range of values obtained in stable union (0.021 1-0.0694). If scaled population-derived instead of measured input functions were used for quantification, mean deviations of 23 ± 17% in K1 and 12 ± 16% in Kmlf were observed. Conclusions: Normal healing of predominantly cortical bone transplants is characterized by relatively low osteoblastic activity together with increased perfusion. It may be anticipated that transplant necrosis can be identified by showing markedly reduced F− influx. In case that measured input functions are not available, quantification with scaled population-derived input functions is appropriate if expected differences in quantitative parameters exceed 70%.


1996 ◽  
Vol 35 (05) ◽  
pp. 181-185 ◽  
Author(s):  
H. Herzog

SummaryThe measurement of blood flow in various organs and its visual presentation in parametric images is a major application in nuclear medicine. The purpose of this paper is to summarize the most important nuclear medicine procedures used to quantify regional blood flow. Starting with the first concepts introduced by Fick and later by Kety-Schmidt the basic principles of measuring global and regional cerebral blood are discussed and their relationships are explained. Different applications and modifications realized first in PET- and later in SPECT-studies of the brain and other organs are described. The permeability and the extraction of the different radiopharmaceuticals are considered. Finally some important instrumental implications are compared.


1987 ◽  
Vol 103 (5) ◽  
pp. 176-181 ◽  
Author(s):  
Norma Slepecky ◽  
Clarence Angelborg ◽  
Hans-Christian Larsen

1995 ◽  
Vol 268 (2) ◽  
pp. R492-R497 ◽  
Author(s):  
C. H. Lang ◽  
M. Ajmal ◽  
A. G. Baillie

Intracerebroventricular injection of N-methyl-D-aspartate (NMDA) produces hyperglycemia and increases whole body glucose uptake. The purpose of the present study was to determine in rats which tissues are responsible for the elevated rate of glucose disposal. NMDA was injected intracerebroventricularly, and the glucose metabolic rate (Rg) was determined for individual tissues 20-60 min later using 2-deoxy-D-[U-14C]glucose. NMDA decreased Rg in skin, ileum, lung, and liver (30-35%) compared with time-matched control animals. In contrast, Rg in skeletal muscle and heart was increased 150-160%. This increased Rg was not due to an elevation in plasma insulin concentrations. In subsequent studies, the sciatic nerve in one leg was cut 4 h before injection of NMDA. NMDA increased Rg in the gastrocnemius (149%) and soleus (220%) in the innervated leg. However, Rg was not increased after NMDA in contralateral muscles from the denervated limb. Data from a third series of experiments indicated that the NMDA-induced increase in Rg by innervated muscle and its abolition in the denervated muscle were not due to changes in muscle blood flow. The results of the present study indicate that 1) central administration of NMDA increases whole body glucose uptake by preferentially stimulating glucose uptake by skeletal muscle, and 2) the enhanced glucose uptake by muscle is neurally mediated and independent of changes in either the plasma insulin concentration or regional blood flow.


1992 ◽  
Vol 72 (6) ◽  
pp. 2238-2243 ◽  
Author(s):  
J. C. LaManna ◽  
L. M. Vendel ◽  
R. M. Farrell

Rats were exposed to hypobaric hypoxia (0.5 atm) for up to 3 wk. Hypoxic rats failed to gain weight but maintained normal brain water and ion content. Blood hematocrit was increased by 48% to a level of 71% after 3 wk of hypoxia compared with littermate controls. Brain blood flow was increased by an average of 38% in rats exposed to 15 min of 10% normobaric oxygen and by 23% after 3 h but was not different from normobaric normoxic rats after 3 wk of hypoxia. Sucrose space, as a measure of brain plasma volume, was not changed under any hypoxic conditions. The mean brain microvessel density was increased by 76% in the frontopolar cerebral cortex, 46% in the frontal motor cortex, 54% in the frontal sensory cortex, 65% in the parietal motor cortex, 68% in the parietal sensory cortex, 68% in the hippocampal CA1 region, 57% in the hippocampal CA3 region, 26% in the striatum, and 56% in the cerebellum. The results indicate that hypoxia elicits three main responses that affect brain oxygen availability. The acute effect of hypoxia is an increase in regional blood flow, which returns to control levels on continued hypoxic exposure. Longer-term effects of continued moderate hypoxic exposure are erythropoiesis and a decrease in intercapillary distance as a result of angiogenesis. The rise in hematocrit and the increase in microvessel density together increase oxygen availability to the brain to within normal limits, although this does not imply that tissue PO2 is restored to normal.


Sign in / Sign up

Export Citation Format

Share Document