Dielectric Breakdown of Polycrystalline Alumina: A Weakest-Link Failure Analysis

2013 ◽  
Vol 96 (11) ◽  
pp. 3430-3439 ◽  
Author(s):  
Benjamin Block ◽  
Youngjin Kim ◽  
Dinesh K. Shetty
Author(s):  
Hua Younan ◽  
Chu Susan ◽  
Gui Dong ◽  
Mo Zhiqiang ◽  
Xing Zhenxiang ◽  
...  

Abstract As device feature size continues to shrink, the reducing gate oxide thickness puts more stringent requirements on gate dielectric quality in terms of defect density and contamination concentration. As a result, analyzing gate oxide integrity and dielectric breakdown failures during wafer fabrication becomes more difficult. Using a traditional FA flow and methods some defects were observed after electrical fault isolation using emission microscopic tools such as EMMI and TIVA. Even with some success with conventional FA the root cause was unclear. In this paper, we will propose an analysis flow for GOI failures to improve FA’s success rate. In this new proposed flow both a chemical method, Wright Etch, and SIMS analysis techniques are employed to identify root cause of the GOI failures after EFA fault isolation. In general, the shape of the defect might provide information as to the root cause of the GOI failure, whether related to PID or contamination. However, Wright Etch results are inadequate to answer the questions of whether the failure is caused by contamination or not. If there is a contaminate another technique is required to determine what the contaminant is and where it comes from. If the failure is confirmed to be due to contamination, SIMS is used to further determine the contamination source at the ppm-ppb level. In this paper, a real case of GOI failure will be discussed and presented. Using the new failure analysis flow, the root cause was identified to be iron contamination introduced from a worn out part made of stainless steel.


2014 ◽  
Vol 48 (3) ◽  
pp. 63-72 ◽  
Author(s):  
Raju Ramesh ◽  
Dharmaraj Sathianarayanan ◽  
Vittal Doss Prakash ◽  
Arumugam Vadivelan ◽  
Sethuraman Ramesh ◽  
...  

AbstractSingle-mode fiber optic systems can play vital roles in cabled deep-water vehicle operations at greater depths (>3,000 m). One kind of single-mode fiber optic system, the ROSUB 6000, is used in a deep-water work-class remotely operated vehicle (ROV). Fiber optic link failure of ROV telemetry and sound navigation and ranging were noticed at a water depth of 3,050 m during the ROSUB 6000 system sea trials. A failure analysis of the fiber optic communication system was carried out with the link data logged during different phases of the deep-sea trials. The results from the failure analysis carried out during deep-sea trials showed an increase in the fiber optic link loss from a depth of 900 m onwards. Further analysis of the fiber optic link loss in the laboratory involved pressure and low-temperature testing of all the subsea components in the ROV telemetry link. From the laboratory pressure test results, it was concluded that pressure was not the root cause of the fiber optic link failure. On further analysis, a complete fiber optic link failure was noticed during the low-temperature testing of the subsea components. Furthermore, the low-temperature testing of the individual subsea components revealed that the fiber optic rotary joint (FORJ) insertion loss increased rapidly at low temperatures. This FORJ insertion loss led to complete failure of the fiber optic links in the ROV. The degradation of index-matching fluid in the FORJ was identified to be the root cause of fiber link failure.


Author(s):  
M A H. Al-Junaid ◽  
Mohd Nazri Bin Mohd Warip ◽  
R Badlishah Ahmad ◽  
Anuar Mat Safar ◽  
I Zunaidi ◽  
...  

1992 ◽  
Vol 10 (1) ◽  
pp. 33-40 ◽  
Author(s):  
H. Scholten ◽  
L. Dortmans ◽  
G. de With ◽  
B. de Smet ◽  
P. Bach

1992 ◽  
Vol 10 (2) ◽  
pp. 101-107 ◽  
Author(s):  
B.J de Smet ◽  
P.W Bach ◽  
H.F Scholten ◽  
L.J.M.G Dortmans ◽  
G de With

Sign in / Sign up

Export Citation Format

Share Document