Environmental controls on African herbivore responses to landscapes of fear

Oikos ◽  
2020 ◽  
Author(s):  
Andrew B. Davies ◽  
Joris P. G. M. Cromsigt ◽  
Craig J. Tambling ◽  
Elizabeth le Roux ◽  
Nicholas Vaughn ◽  
...  
2019 ◽  
Author(s):  
Marko J. Spasojevic ◽  
Sören Weber1

Stable carbon (C) and nitrogen (N) isotopes in plants are important indicators of plant water use efficiency and N acquisition strategies. While often regarded as being under environmental control, there is growing evidence that evolutionary history may also shape variation in stable isotope ratios (δ13C and δ15N) among plant species. Here we examined patterns of foliar δ13C and δ15N in alpine tundra for 59 species in 20 plant families. To assess the importance of environmental controls and evolutionary history, we examined if average δ13C and δ15N predictably differed among habitat types, if individual species exhibited intraspecific trait variation (ITV) in δ13C and δ15N, and if there were a significant phylogenetic signal in δ13C and δ15N. We found that variation among habitat types in both δ13C and δ15N mirrored well-known patterns of water and nitrogen limitation. Conversely, we also found that 40% of species exhibited no ITV in δ13C and 35% of species exhibited no ITV in δ15N, suggesting that some species are under stronger evolutionary control. However, we only found a modest signal of phylogenetic conservatism in δ13C and no phylogenetic signal in δ15N suggesting that shared ancestry is a weaker driver of tundra wide variation in stable isotopes. Together, our results suggest that both evolutionary history and local environmental conditions play a role in determining variation in δ13C and δ15N and that considering both factors can help with interpreting isotope patterns in nature and with predicting which species may be able to respond to rapidly changing environmental conditions.


2017 ◽  
Vol 80 (2) ◽  
pp. 167-180 ◽  
Author(s):  
M Monteiro ◽  
J Séneca ◽  
L Torgo ◽  
DFR Cleary ◽  
NCM Gomes ◽  
...  

1999 ◽  
Author(s):  
Michael Richardson ◽  
Kevin Briggs ◽  
Dawn Lavoie ◽  
Dale Bibee

Author(s):  
Elissa M Schechter-Perkins ◽  
Polly van den Berg ◽  
Westyn Branch-Elliman

Abstract There are limited tools for adapting COVID-19 infection control plans to school settings. We present an infection prevention model for optimizing safe re-opening for elementary and secondary schools during the global COVID-19 pandemic and review the current evidence behind various infection prevention interventions in school settings. The model is adapted from the Centers for Disease Control and Prevention fundamental pillars for infection prevention, and includes four categories of intervention: epidemiologic controls (town prevalence metrics, diagnostic testing, quarantine strategies), administrative controls (state vaccination policies, alternative school models, symptom screens, quarantine breaks), engineering/environmental controls (distancing, outdoor space, ventilation), and personal protective equipment (PPE)/Hand hygiene (face coverings, hand sanitizing). The adapted infection control pillars model utilizes implementation-science informed considerations to maximize pragmatism and adherence by leveraging evidence-based strategies. It highlights the necessity of redundant infection prevention interventions, acknowledges the importance of community buy-in to achieve real-world effectiveness, and addresses tactics to overcome implementation barriers. Recommendations are grounded in the Dynamic Sustainability Framework and include suggestions to maintain infection prevention effectiveness over time to ensure ongoing safety.


2021 ◽  
Author(s):  
David C Shaw ◽  
Gabriela Ritóková ◽  
Yung-Hsiang Lan ◽  
Doug B Mainwaring ◽  
Andrew Russo ◽  
...  

Abstract Swiss needle cast (SNC), caused by Nothophaeocryptopus gaeumannii, is a foliage disease of Douglas-fir (Pseudotsuga menziesii), that reduces growth in native stands and exotic plantations worldwide. An outbreak of SNC began in coastal Oregon in the mid-1990s and has persisted since that time. Here we review the current state of knowledge after 24 years of research and monitoring, with a focus on Oregon, although the disease is significant in coastal Washington and has recently emerged in southwestern British Columbia. We present new insights into SNC distribution, landscape patterns, disease epidemiology and ecology, host-pathogen interactions, trophic and hydrologic influences, and the challenges of Douglas-fir plantation management in the presence of the disease. In Oregon, the SNC outbreak has remained geographically contained but has intensified. Finally, we consider the implications of climate change and other recently emerged foliage diseases on the future of Douglas-fir plantation management. Study Implications: Douglas-fir tree growers need to consider Swiss needle cast (SNC) and other emerging foliage diseases as SNC has not abated over the past 24 years, and along with other emerging diseases, it continues to pose a threat to Douglas-fir plantation productivity. Douglas-fir management in western Oregon remains important, such that a knowledge of disease impacts and effective silvicultural responses is key. Managers should carefully consider whether alternative species may be ecologically or economically beneficial in some situations while tree improvement programs must continue to breed for tolerance to SNC. Research shows that regional scale foliage disease outbreaks can result in trophic cascades and hydrologic changes that affects more than just the trees. The environmental controls on the SNC epidemic imply that climate change could strongly influence future directions of the outbreak, with the greatest threats to trees at higher elevations.


Sign in / Sign up

Export Citation Format

Share Document