Bending Vibrations of the Femur and the Oscillatory Behavior of a Cemented Femoral Hip Endoprosthesis

2000 ◽  
Vol 122 (4) ◽  
pp. 416-422
Author(s):  
M. Thomsen ◽  
A. Go¨rtz ◽  
U. V. Na¨gerl ◽  
D. Kubein-Meesenburg ◽  
W. Go¨rtz ◽  
...  

The paper presents a novel method for recording amplitude and phase of 6D-vibrations of a spatial pendulum over a wide frequency range (10 Hz up to 20 kHz). The six degrees of freedom of the pendulum mass were monitored by three electrodynamic stereo pickups. At rest, the tips of the needles and the pendulum’s center of mass defined the reference system with respect to which the oscillations of the mass were recorded in terms of their amplitudes and phases. Its small dimensions, constant transfer characteristics, linearity, high dynamics, and virtual lack of reaction onto the moving system over the entire frequency range provided the advantages of the measuring system. This method was used to analyze the spatial 6D-vibrations of the head of a cemented femoral hip endoprosthesis when the femur was stimulated to bending vibrations. The head of the prosthesis carried out axial rotational vibrations at every frequency used to stimulate the femur. The amplitudes of the axial rotations of the cortical bone were small in comparison to the ones of the prosthesis head, indicating that axial rotational vibrations following femur bending vibrations mainly stressed the spongiosa and the cement layer. This was observed over the entire frequency range, including at the low frequencies relevant for gait. Over the low-frequency range, as well as at some of the higher resonance frequencies, stationary instantaneous helical axes characterized the vibrations. The measurements suggest the mechanism that the interface “implant-bone” may already be stressed by axial torsional loads when the femur is loaded by bending impacts that are known to occur during walking. [S0148-0731(00)01604-6]

Geophysics ◽  
1992 ◽  
Vol 57 (6) ◽  
pp. 854-859 ◽  
Author(s):  
Xiao Ming Tang

A new technique for measuring elastic wave attenuation in the frequency range of 10–150 kHz consists of measuring low‐frequency waveforms using two cylindrical bars of the same material but of different lengths. The attenuation is obtained through two steps. In the first, the waveform measured within the shorter bar is propagated to the length of the longer bar, and the distortion of the waveform due to the dispersion effect of the cylindrical waveguide is compensated. The second step is the inversion for the attenuation or Q of the bar material by minimizing the difference between the waveform propagated from the shorter bar and the waveform measured within the longer bar. The waveform inversion is performed in the time domain, and the waveforms can be appropriately truncated to avoid multiple reflections due to the finite size of the (shorter) sample, allowing attenuation to be measured at long wavelengths or low frequencies. The frequency range in which this technique operates fills the gap between the resonant bar measurement (∼10 kHz) and ultrasonic measurement (∼100–1000 kHz). By using the technique, attenuation values in a PVC (a highly attenuative) material and in Sierra White granite were measured in the frequency range of 40–140 kHz. The obtained attenuation values for the two materials are found to be reliable and consistent.


2007 ◽  
Vol 38 (7) ◽  
pp. 11-17
Author(s):  
Ronald M. Aarts

Conventionally, the ultimate goal in loudspeaker design has been to obtain a flat frequency response over a specified frequency range. This can be achieved by carefully selecting the main loudspeaker parameters such as the enclosure volume, the cone diameter, the moving mass and the very crucial “force factor”. For loudspeakers in small cabinets the results of this design procedure appear to be quite inefficient, especially at low frequencies. This paper describes a new solution to this problem. It consists of the combination of a highly non-linear preprocessing of the audio signal and the use of a so called low-force-factor loudspeaker. This combination yields a strongly increased efficiency, at least over a limited frequency range, at the cost of a somewhat altered sound quality. An analytically tractable optimality criterion has been defined and has been verified by the design of an experimental loudspeaker. This has a much higher efficiency and a higher sensitivity than current low-frequency loudspeakers, while its cabinet can be much smaller.


Author(s):  
Daoyong Wang ◽  
Wencan Zhang ◽  
Mu Chai ◽  
Xiaguang Zeng

To reduce the vibration and shock of powertrain in the process of engine key on/off and vehicle in situ shift, a novel semi-active hydraulic damping strut is developed. The purpose of this paper is to study and discuss the dynamic stiffness model of the semi-active hydraulic damping strut. In this study, the dynamic characteristics of semi-active hydraulic damping strut were analyzed based on MTS 831 test rig first. Then, the dynamic stiffness model of semi-active hydraulic damping strut was established based on 2 degrees of freedom vibration system. In this research, a linear, fractional derivative and friction model was used to represent the nonlinear rubber bushing characteristic; the Maxwell model was used to describe the semi-active hydraulic damping strut body model; and the parameters of rubber bushing and semi-active hydraulic damping strut body were identified. The dynamic stiffness values were calculated with solenoid valve energized and not energized at amplitudes of 1 mm and 4 mm, which were consistent with experimental results in low-frequency range. Furthermore, the simplified dynamic stiffness model of the semi-active hydraulic damping strut was discussed, which showed that bushing can be ignored in low-frequency range. Then, the influence of equivalent spring stiffness, damping constant, and rubber bushing stiffness on the stiffness and damping capacity of the semi-active hydraulic damping strut were analyzed. Finally, the prototype of the semi-active hydraulic damping strut was developed and designed based on the vehicle in situ shift and engine key on/off situations, and experiments of the vehicle with and without semi-active hydraulic damping strut were carried out to verify its function.


2020 ◽  
Vol 635 ◽  
pp. A76 ◽  
Author(s):  
L. Bondonneau ◽  
J.-M. Grießmeier ◽  
G. Theureau ◽  
A. V. Bilous ◽  
V. I. Kondratiev ◽  
...  

Context. To date, only 69 pulsars have been identified with a detected pulsed radio emission below 100 MHz. A LOFAR-core LBA census and a dedicated campaign with the Nançay LOFAR station in stand-alone mode were carried out in the years 2014–2017 in order to extend the known population in this frequency range. Aims. In this paper, we aim to extend the sample of known radio pulsars at low frequencies and to produce a catalogue in the frequency range of 25–80 MHz. This will allow future studies to probe the local Galactic pulsar population, in addition to helping explain their emission mechanism, better characterising the low-frequency turnover in their spectra, and obtaining new information about the interstellar medium through the study of dispersion, scattering, and scintillation. Methods. We observed 102 pulsars that are known to emit radio pulses below 200 MHz and with declination above −30°. We used the Low Band Antennas (LBA) of the LOw Frequency ARray (LOFAR) international station FR606 at the Nançay Radio Observatory in stand-alone mode, recording data between 25 and 80 MHz. Results. Out of our sample of 102 pulsars, we detected 64. We confirmed the existence of ten pulsars detected below 100 MHz by the LOFAR LBA census for the first time (Bilous et al. 2020, A&A, 635, A75) and we added two more pulsars that had never before been detected in this frequency range. We provided average pulse profiles, DM values, and mean flux densities (or upper limits in the case of non-detections). The comparison with previously published results allows us to identify a hitherto unknown spectral turnover for five pulsars, confirming the expectation that spectral turnovers are a widespread phenomenon.


2018 ◽  
Vol 140 (3) ◽  
Author(s):  
Xuezhi Zhu ◽  
Zhaobo Chen ◽  
Yinghou Jiao ◽  
Yanpeng Wang

In order to broaden the sound absorption bandwidth of a perforated panel in the low frequency range, a lightweight membrane-type resonator is installed in the back cavity of the perforated panel to combine into a compound sound absorber (CSA). Because of the great flexibility, the membrane-type resonator can be vibrated easily by the incident sound waves passing through the holes of the perforated panel. In the low frequency range, the membrane-type resonator and the perforated panel constitute a two degrees-of-freedom (DOF)-resonant type sound absorption system, which generates two sound absorption peaks. By tuning the parameters of the membrane type resonator, a wide frequency band having a large sound absorption coefficient can be obtained. In this paper, the sound absorption coefficient of CSA is derived analytically by combining the vibration equation of the membrane-type resonator with the acoustic impedance equation of the perforated panel. The influences of the parameters of the membrane-type resonator on the sound absorption performance of the CSA are numerically analyzed. Finally, the wide band sound absorption capacity of the CSA is validated by the experimental test.


Author(s):  
Sophie R. Kaye ◽  
Ethan D. Casavant ◽  
Paul E. Slaboch

Abstract Attenuating low frequencies is often problematic, due to the large space required for common absorptive materials to mitigate such noise. However, natural hollow reeds are known to effectively attenuate low frequencies while occupying relatively little space compared to traditional absorptive materials. This paper discusses the effect of varied outer diameter, and outer spacing on the 200–1600 Hz acoustic absorption of additively manufactured arrays of hollow cylinders. Samples were tested in a 10 cm diameter normal incidence impedance tube such that cylinder length was oriented perpendicular to the incoming plane wave. By varying only one geometric element of each array, the absorption due to any particular parameter can be assessed individually. The tests confirmed the hypothesis that minimizing cylinder spacing and maximizing cylinder diameter resulted in increased overall absorption and produced more focused absorption peaks at specific low frequencies. Wider cylinder spacing produced a broader absorptive frequency range, despite shifting upward in frequency. Thus, manipulating these variables can specifically target absorption for low frequency noise that would otherwise disturb listeners.


2020 ◽  
Vol 60 (5) ◽  
pp. 1068-1079 ◽  
Author(s):  
Krista LePiane ◽  
Christopher J Clark

Synopsis Owls have specialized feather features hypothesized to reduce sound produced during flight. One of these features is the velvet, a structure composed of elongated filaments termed pennulae that project dorsally from the upper surface of wing and tail feathers. There are two hypotheses of how the velvet functions to reduce sound. According to the aerodynamic noise hypothesis, the velvet reduces sound produced by aerodynamic processes, such as turbulence development on the surface of the wing. Alternatively, under the structural noise hypothesis, the velvet reduces frictional noise produced when two feathers rub together. The aerodynamic noise hypothesis predicts impairing the velvet will increase aerodynamic flight sounds predominantly at low frequency, since turbulence formation predominantly generates low frequency sound; and that changes in sound levels will occur predominantly during the downstroke, when aerodynamic forces are greatest. Conversely, the frictional noise hypothesis predicts impairing the velvet will cause a broadband (i.e., across all frequencies) increase in flight sounds, since frictional sounds are broadband; and that changes in sound levels will occur during the upstroke, when the wing feathers rub against each other the most. Here, we tested these hypotheses by impairing with hairspray the velvet on inner wing feathers (P1-S4) of 13 live barn owls (Tyto alba) and measuring the sound produced between 0.1 and 16 kHz during flapping flight. Relative to control flights, impairing the velvet increased sound produced across the entire frequency range (i.e., the effect was broadband) and the upstroke increased more than the downstroke, such that the upstroke of manipulated birds was louder than the downstroke, supporting the frictional noise hypothesis. Our results suggest that a substantial amount of bird flight sound is produced by feathers rubbing against feathers during flapping flight.


2020 ◽  
Vol 12 (07) ◽  
pp. 2050075
Author(s):  
Hongyun Wang ◽  
Heow Pueh Lee ◽  
Wei Xu

Multi-layered locally resonant phononic crystals (LRPCs) with wider and multiple bandgaps (BGs) in low frequency range and small size of the unit cell have promising applications in noise and vibration controls. In this paper, a 2D two-layered ternary LRPC consisting of a periodical array of cylindrical inclusions embedded in an epoxy matrix is investigated by the finite element method (FEM), where the inclusion is comprised of two coaxial cylindrical steel cores with rubber coating. It is found that the size of the inclusion of the 2D two-layered ternary LRPC has significant effects on the BG properties. With the increase of the core radius and coating thickness, the first BG would shift to lower frequency range with its width decreasing, and the second BG width would become wider until the third BG appears. Especially, with the increase of the coating thickness, more bands and BGs would appear in the lower frequency range. Based on the formation mechanisms of the BGs, several mass-spring models to predict the frequencies of the first two BG edges are developed. The results calculated by these mass-spring models are in good agreement with those by the FEM except for the upper edge frequency of the second BG when the rubber coating thickness exceeds a certain value and the third BG is opened up. These proposed mass-spring models would allow for quick pre-estimation of the resonance frequencies, and facilitate the selection of possible parameters for the wider and lower frequency BGs to obtain the desired attenuation bands. The studies would also benefit the design of multiple BGs for some device applications.


The vibrational absorption spectra of some substituted benzenes have been measured in the range 50 to 450 cm -1 . The compounds were measured as liquids, in solutions, as crystalline solidsat low temperature, and in polyethylene matrices. The extension of the infrared spectrum to very low frequencies has made it possible to determine new values for many fundamental vibrations. An assignment of all the vibrational frequencies in the low-frequency range has been made, from the infrared and Raman data, for p -dihalogeno-benzenes, p -halogenotoluenes, p -halogeno-nitrobenzenes, and for some mono-substituted benzenes. Some measurements have been made on the marked variation of intensity of the lowest frequency bending mode of p -dihalogeno-benzenes.


2018 ◽  
Vol 157 ◽  
pp. 03002 ◽  
Author(s):  
Mateusz Barys ◽  
Robert Zalewski

In this paper an inertial amplification mechanism with an embedded smart spring-damper device for attenuation of longitudinal vibrations in continuous structures is analyzed. The complex systems are the extension of the already investigated inertial mechanism, here additionally equipped with the vacuum controlled spring-damper device which shows features of smart materials. This allows the semi-active control to affect different frequency vibration ranges in the real time. The fea.tures of the basic inertia amplification mechanism are preserved as a possibility to generate two neighbouring anti-resonance frequencies between resonance peaks in the low frequency range.


Sign in / Sign up

Export Citation Format

Share Document