elastic wave
Recently Published Documents


TOTAL DOCUMENTS

3284
(FIVE YEARS 515)

H-INDEX

88
(FIVE YEARS 10)

2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Myung-Joon Lee ◽  
Il-Kwon Oh

AbstractValley degree of freedom, associated with the valley topological phase, has propelled the advancement of the elastic waveguide by offering immunity to backscattering against bending and weak perturbations. Despite many attempts to manipulate the wave path and working frequency of the waveguide, internal characteristic of an elastic wave such as rich polarization has not yet been utilized with valley topological phases. Here, we introduce the rich polarization into the valley degree of freedom, to achieve topologically protected in-plane and out-of-plane mode separation of an elastic wave. Accidental degeneracy proves its real worth of decoupling the in-plane and out-of-plane polarized valley Hall phases. We further demonstrate independent and simultaneous control of in-plane and out-of-plane waves, with intact topological protection. The presenting procedure for designing the topologically protected wave separation based on accidental degeneracy will widen the valley topological physics in view of both generation mechanism and application areas.


Author(s):  
Shunzu Zhang ◽  
Shiwei Shu ◽  
Xiaohui Bian

Abstract This letter reports the design of a magneto-elastic metasurface composed of arrayed Terfenol-D pillars deposited on a homogeneous Aluminum plate, aiming to realize the tunability of flexural wave anomalous propagation without altering the structure. Considering the magneto-mechanical coupling of magnetostrictive materials, the phase shift and transmission of functional unit can be calculated. The anomalous refraction of incident flexural wave (i.e., negative refraction) can be accomplished by adjusting magnetic field and pre-stress properly, the refraction angle is remarkably affected by magnetic distribution. The proposed metasurface provides a method for flexible tunability of elastic wave in the fields of vibration/noise control.


Geophysics ◽  
2022 ◽  
pp. 1-71
Author(s):  
Shu-Li Dong ◽  
Jing-Bo Chen

Effective frequency-domain numerical schemes were central for forward modeling and inversion of the elastic wave equation. The rotated optimal nine-point scheme was a highly used finite-difference numerical scheme. This scheme made a weighted average of the derivative terms of the elastic wave equations in the original and the rotated coordinate systems. In comparison with the classical nine-point scheme, it could simulate S-waves better and had higher accuracy at nearly the same computational cost. Nevertheless, this scheme limited the rotation angle to 45°; thus, the grid sampling intervals in the x- and z-directions needed to be equal. Otherwise, the grid points would not lie on the axes, which dramatically complicates the scheme. Affine coordinate systems did not constrain axes to be perpendicular to each other, providing enhanced flexibility. Based on the affine coordinate transformations, we developed a new affine generalized optimal nine-point scheme. At the free surface, we applied the improved free-surface expression with an adaptive parameter-modified strategy. The new optimal scheme had no restriction that the rotation angle must be 45°. Dispersion analysis found that our scheme could effectively reduce the required number of grid points per shear wavelength for equal and unequal sampling intervals compared to the classical nine-point scheme. Moreover, this reduction improved with the increase of Poisson’s ratio. Three numerical examples demonstrated that our scheme could provide more accurate results than the classical nine-point scheme in terms of the internal and the free-surface grid points.


2022 ◽  
Author(s):  
P. Haffinger ◽  
D. Gisolf ◽  
J. Coffin ◽  
N. Chasnikov ◽  
P. Doulgeris

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Tingting Liu ◽  
Chuanping Zhou ◽  
Zhigang Yan ◽  
Guojin Chen

The cantilever plate structure in a T-beam bridge with a large aspect ratio will cause vibration under the influence of environmental disturbance and self-stress, resulting in fatigue damage of the plate structure. Wave control based on elastic wave theory is an effective method to suppress the vibration of the cantilever plate structure in a beam bridge. Based on the classical thin plate theory and the wave control method, the active vibration control of the T-shaped cantilever plate with a large aspect ratio in the beam bridge is studied in this paper. The wave mode control strategy of structural vibration is analyzed and studied, the controller is designed, the vibration mode function of the cantilever plate is established, and the control force/sensor feedback wave control is implemented for the structure. The dynamic response of the cantilever plate before and after applying wave control force is analyzed through numerical examples. The results show that the response of the structure is intense before control, but after wave control, the structure increases damping, absorbs the energy carried by the elastic wave in the structure, weakens the sharp response, and changes the natural frequency of the structure to a certain extent.


2021 ◽  
Vol 3 (1) ◽  
pp. 67-71
Author(s):  
Olena Stankevych ◽  

The solution of the dynamic problem of calculation the wave field of displacements on the surface of an elastic half-space caused by the opening of an internal crack under the action of torsional forces is presented. Based on the solutions of the boundary integral equations, the nature of the change in the amplitude-frequency characteristics of elastic oscillations on the surface of a rigid body depending on the size of the defect is shown.


2021 ◽  
Author(s):  
Sven Schippkus ◽  
Celine Hadziioannou

Matched Field Processing (MFP) is a technique to locate the source of a recorded wave field. It is the generalization of beamforming, allowing for curved wavefronts. In the standard approach to MFP, simple analytical Green's functions are used as synthetic wave fields that the recorded wave fields are matched against. We introduce an advancement of MFP by utilizing Green's functions computed numerically for real Earth structure as synthetic wave fields. This allows in principle to incorporate the full complexity of elastic wave propagation, and through that provide more precise estimates of the recorded wave field's origin. This approach also further emphasizes the deep connection between MFP and the recently introduced interferometry-based source localisation strategy for the ambient seismic field. We explore this connection further by demonstrating that both approaches are based on the same idea: both are measuring the (mis-)match of correlation wave fields. To demonstrate the applicability and potential of our approach, we present two real data examples, one for an earthquake in Southern California, and one for secondary microseism activity in the Northeastern Atlantic and Mediterranean Sea. Tutorial code is provided to make MFP more approachable for the broader seismological community.


Sign in / Sign up

Export Citation Format

Share Document