Measurements in a Turbine Cascade Flow Under Ultra Low Reynolds Number Conditions

2001 ◽  
Vol 124 (1) ◽  
pp. 100-106 ◽  
Author(s):  
Kenneth W. Van Treuren ◽  
Terrence Simon ◽  
Marc von Koller ◽  
Aaron R. Byerley ◽  
James W. Baughn ◽  
...  

With the new generation of gas turbine engines, low Reynolds number flows have become increasingly important. Designers must properly account for transition from laminar to turbulent flow and separation of the flow from the suction surface, which is strongly dependent upon transition. Of interest to industry are Reynolds numbers based upon suction surface length and flow exit velocity below 150,000 and as low as 25,000. In this paper, the extreme low end of this Reynolds number range is documented by way of pressure distributions, loss coefficients, and identification of separation zones. Reynolds numbers of 25,000 and 50,000 and with 1 percent and 8-9 percent turbulence intensity of the approach flow (free-stream turbulence intensity, FSTI) were investigated. At 25,000 Reynolds number and low FSTI, the suction surface displayed a strong and steady separation region. Raising the turbulence intensity resulted in a very unsteady separation region of nearly the same size on the suction surface. Vortex generators were added to the suction surface, but they appeared to do very little at this Reynolds number. At the higher Reynolds number of 50,000, the low-FSTI case was strongly separated on the downstream portion of the suction surface. The separation zone was eliminated when the turbulence level was increased to 8-9 percent. Vortex generators were added to the suction surface of the low-FSTI case. In this instance, the vortices were able to provide the mixing needed to re-establish flow attachment. This paper shows that massive separation at very low Reynolds numbers (25,000) is persistent, in spite of elevated FSTI and added vortices. However, at a higher Reynolds number, there is opportunity for flow reattachment either with elevated free-stream turbulence or with added vortices. This may be the first documentation of flow behavior at such low Reynolds numbers. Although it is undesirable to operate under these conditions, it is important to know what to expect and how performance may be improved if such conditions are unavoidable.

Author(s):  
Kenneth W. Van Treuren ◽  
Terrence Simon ◽  
Marc von Koller ◽  
Aaron R. Byerley ◽  
James W. Baughn ◽  
...  

With the new generation of gas turbine engines, low Reynolds number flows have become increasingly important. Designers must properly account for transition from laminar to turbulent flow and separation of the flow from the suction surface, which is strongly dependent upon transition. Of interest to industry are Reynolds numbers based upon suction surface length and flow exit velocity below 150,000 and as low as 25,000. In this paper, the extreme low end of this Reynolds number range is documented by way of pressure distributions, loss coefficients and identification of separation zones. Reynolds numbers of 25,000 and 50,000 and with 1% and 8–9% turbulence intensity of the approach flow (Free Stream Turbulence Intensity, FSTI) were investigated. At 25,000 Reynolds number and low FSTI, the suction surface displayed a strong and steady separation region. Raising the turbulence intensity resulted in a very unsteady separation region of nearly the same size on the suction surface. Vortex generators were added to the suction surface, but they appeared to do very little at this Reynolds number. At the higher Reynolds number of 50,000, the low-FSTI case was strongly separated on the downstream portion of the suction surface. The separation zone was eliminated when the turbulence level was increased to 8–9%. Vortex generators were added to the suction surface of the low-FSTI case. In this instance, the vortices were able to provide the mixing needed to reestablish flow attachment. This paper shows that massive separation at very low Reynolds numbers (25,000) is persistent, in spite of elevated FSTI and added vortices. However, at a higher Reynolds number, there is opportunity for flow reattachment either with elevated freestream turbulence or with added vortices. This may be the first documentation of flow behavior at such low Reynolds numbers. Though undesirable to operate under these conditions, it is important to know what to expect and how performance may be improved if such conditions are unavoidable.


1984 ◽  
Vol 106 (3) ◽  
pp. 298-306 ◽  
Author(s):  
I. P. Castro

This paper documents some of the effects of free stream turbulence on the mean flow properties of turbulent boundary layers in zero pressure gradients. Attention is concentrated on flows for which the momentum thickness Reynolds number is less than about 2000. Direct Reynolds number effects are therefore significant and it is shown that such effects reduce as the level of free stream turbulence rises. A modification to Hancock’s [1] empirical correlation relating the fractional increase in skin friction at constant Reynolds number to a free stream turbulence parameter containing a dependence on both intensity and length scale is proposed. While this modification has the necessary characteristic of being a function of the free stream turbulence parameters as well as the Reynolds number, it is argued that the relative importance of intensity and length scale changes at low Reynolds numbers; the data are not inconsistent with this idea. The experiments cover the range 500 ⪝ Reθ ⪝ 2500, u′/Ue ⪝ 0.07, 0.8 ⪝ Le/δ ⪝ 2.9, where u′/Ue is the free stream turbulence intensity and Le/δ is the ratio of the dissipation length scale of the free stream turbulence to the 99 percent thickness of the boundary layer.


1999 ◽  
Vol 122 (2) ◽  
pp. 431-433 ◽  
Author(s):  
C. G. Murawski ◽  
K. Vafai

An experimental study was conducted in a two-dimensional linear cascade, focusing on the suction surface of a low pressure turbine blade. Flow Reynolds numbers, based on exit velocity and suction length, have been varied from 50,000 to 300,000. The freestream turbulence intensity was varied from 1.1 to 8.1 percent. Separation was observed at all test Reynolds numbers. Increasing the flow Reynolds number, without changing freestream turbulence, resulted in a rearward movement of the onset of separation and shrinkage of the separation zone. Increasing the freestream turbulence intensity, without changing Reynolds number, resulted in shrinkage of the separation region on the suction surface. The influences on the blade’s wake from altering freestream turbulence and Reynolds number are also documented. It is shown that width of the wake and velocity defect rise with a decrease in either turbulence level or chord Reynolds number. [S0098-2202(00)00202-9]


Author(s):  
Ali Ameri

It is a challenge to simulate the flow in a Variable Speed Power Turbine (VSPT), or, for that matter, rear stages of low pressure turbines at low Reynolds numbers due to laminar flow separation or laminar/turbulent flow transition on the blades. At low Reynolds numbers, separation induced-transition is more prevalent which can result in efficiency lapse. LES has been used in recent years to simulate these types of flows with a good degree of success. In the present work, very low free stream turbulence flows at exit Reynolds number of 220k were simulated. The geometry was a cascade which was constructed with the midspan section of a VSPT design. Most LES simulations to date, have focused on the midspan region. As the endwall effect was significant in these simulations due to thick incoming boundary layer, full blade span computation was necessitated. Inlet flow angles representative of take-off and cruise conditions, dictated by the rotor speed in an actual design, were analyzed. This was done using a second order finite volume code and a high resolution grid. As is the case with Implicit-LES methods, no sub-grid scale model was used. Blade static pressure data, at various span locations, and downstream probe survey measurements of total pressure loss coefficient were used to verify the results. The comparisons showed good agreement between the simulations and the experimental data.


Author(s):  
Takayuki Matsunuma ◽  
Hiroyuki Abe ◽  
Yasukata Tsutsui

The aerodynamic characteristics of turbine cascades are thought to be relatively satisfactory due to the favorable pressure of the accelerating flow. But within the low Reynolds number region of 6×104 where the 300kW ceramic gas turbines which are being developed under the New Sunshine project of Japan operate, the characteristics such as boundary layer separation, reattachment and secondary flow which lead to prominent power losses can not be easily predicted. In this research, experiments have been conducted to evaluate the performance of an annular turbine stator cascade, especially focused on the influence of inlet turbulence intensity at low Reynolds numbers. The Reynolds number, based on inlet condition, was varied from 2×104 to 12×104. The turbulence intensity was changed between 0.5% and 8.9% by setting turbulence generation sheets. The wake of the cascade was measured using a 5-hole pressure probe and a single element hot-wire anemometry. The Reynolds number was a determinative important parameter, while the turbulence intensity was found to have an insignificant effect on the overall total pressure loss of annular turbine stator at low Reynolds numbers. However, the increase in separation zone on suction surface and the decrease of passage vortices near the endwalls were observed locally with the increase in the inlet turbulence intensity. Instantaneous velocity signals proved the transformation of the flow structure in separation zone. The increase in profile loss (separation) and the decrease in net secondary loss (passage vonices) offset each other. Therefore, the net overall loss remains almost constant.


2010 ◽  
Vol 133 (3) ◽  
Author(s):  
Darius D. Sanders ◽  
Walter F. O’Brien ◽  
Rolf Sondergaard ◽  
Marc D. Polanka ◽  
Douglas C. Rabe

There has been a need for improved prediction methods for low pressure turbine (LPT) blades operating at low Reynolds numbers. This is known to occur when LPT blades are subjugated to high altitude operations causing a decrease in the inlet Reynolds number. Boundary layer separation is more likely to be present within the flowfield of the LPT stages due to increase in the region adverse pressure gradients on the blade suction surface. Accurate CFD predictions are needed in order to improve design methods and performance prediction of LPT stages operating at low Reynolds numbers. CFD models were created for the flow over two low pressure turbine blade designs using a new turbulent transitional flow model, originally developed by Walters and Leylek (2004, “A New Model for Boundary Layer Transition Using a Single Point RANS Approach,” ASME J. Turbomach., 126(1), pp. 193–202). Part I of this study applied Walters and Leylek’s model to a cascade CFD model of a LPT blade airfoil with a light loading level. Flows were simulated over a Reynolds number range of 15,000–100,000 and predicted the laminar-to-turbulent transitional flow behavior adequately. It showed significant improvement in performance prediction compared to conventional RANS turbulence models. Part II of this paper presents the application of the prediction methodology developed in Part I to both two-dimensional and three-dimensional cascade models of a largely separated LPT blade geometry with a high blade loading level. Comparisons were made with available experimental cascade results on the prediction of the inlet Reynolds number effect on surface static pressure distribution, suction surface boundary layer behavior, and the wake total pressure loss coefficient. The kT-kL-ω transitional flow model accuracy was judged sufficient for an understanding of the flow behavior within the flow passage, and can identify when and where a separation event occurs. This model will provide the performance prediction needed for modeling of low Reynolds number effects on more complex geometries.


1978 ◽  
Vol 100 (4) ◽  
pp. 671-677 ◽  
Author(s):  
J. C. Simonich ◽  
P. Bradshaw

Measurements in a boundary layer in zero pressure gradient show that the effect of grid-generated free-stream turbulence is to increase heat transfer by about five percent for each one percent rms increase of the longitudinal intensity. In fact, even a Reynolds analogy factor, 2 × (Stanton number)/(skin-friction coefficient), increases significantly. It is suggested that the irreconcilable differences between previous measurements are attributable mainly to the low Reynolds numbers of most of those measurements. The present measurements attained a momentum-thickness Reynolds number of 6500 (chord Reynolds number approximately 6.3 × 106) and are thought to be typical of high-Reynolds-number flows.


Sign in / Sign up

Export Citation Format

Share Document