Experimental and Numerical Investigation of the Flow Field in the Tip Region of an Axial Ventilation Fan

2004 ◽  
Vol 127 (2) ◽  
pp. 299-307 ◽  
Author(s):  
Xiaocheng Zhu ◽  
Wanlai Lin ◽  
Zhaohui Du

The tip leakage flow in an axial ventilation fan with various tip clearances is investigated by experimental measurement and numerical simulation. For a low-rotating-speed ventilation fan with a large tip clearance, both experimental measurement and numerical simulation indicate that the leakage flow originating from the tip clearance along the chord rolls up into a three-dimensional spiral structure to form a leakage flow vortex. The mixing interaction between the tip leakage flow and the main flow produces a low axial velocity region in the tip region, which leads to blockage of the main flow. As the tip clearance increases, the tip leakage flow and the reverse flow become stronger and fully developed. In addition, the position of the first appearance of the tip leakage vortex moves further downstream in a direction parallel to the mid chord line.

Author(s):  
Xiaocheng Zhu ◽  
Wanlai Lin ◽  
Zhaohui Du

The tip leakage flow in an axial ventilation fan with various tip clearances is investigated by experimental measurement and numerical simulation. The characteristic of a ventilation fan is an extreme low-pressure difference, a large tip clearance with a low rotating speed. A three dimensional PDA (Particle Dynamics Analysis) system is used for the measurement of the velocity field in the tip clearance region. The flow field is surveyed across the whole passage at fifteen axial locations (from 100% axial chord in front of the leading edge to 100% axial chord behind the trailing edge), mainly focusing on areas close to the blade tip (from 90% of the blade span to the casing wall). Both experimental measurement and numerical simulation indicate that the leakage flow originating from the tip clearance along the chord rolls up into a three-dimensional spiral structure to form a leakage flow vortex. A low axial velocity zone shows up in the tip region, which leads to blockage of the main flow. There are under-turning zones near and in the blade tip region, and an overturning zone in a lower span region with a critical span-wise position of about 94%. A reverse flow appears at the suction side near the trailing edge. As the tip clearance increases, the tip leakage flow and the reverse flow become stronger and fully developed. In addition, the position of the first appearance of the tip leakage vortex moves further downstream in a direction parallel to the mid chord line.


Author(s):  
Wenlin Huang ◽  
Huijing Zhao ◽  
Zhiheng Wang ◽  
Guang Xi ◽  
Haijun Liu

The synthetic jet, located at the shroud and close to the blade leading edge, is used to control the flow in a typical centrifugal impeller. The effects of the synthetic jet control and the interaction with the tip leakage flow are mainly investigated at the near-stall working point of impeller using the unsteady numerical analysis. The results indicate that, the effect of the synthetic jet with a small injection angle (15deg) is better when the excitation position is located over the main blade leading edge. However, the synthetic jet with a large injection angle (90deg) obtains a better result when the excitation position is located at the downstream of main blade leading edge. The synthetic jet with a larger velocity amplitude has a more remarkable effect on deflecting the main flow/tip leakage flow interface to the downstream direction. With typical parameters, the synthetic jet increases the circumferentially averaged streamwise location of the main flow/tip leakage flow interface by 12.5% compared with the case without a synthetic jet. The interaction between the tip leakage flow and synthetic jet makes the tip leakage flow out of the tip clearance with larger streamwise momentum, which is favorable to restrain the tip leakage flow to spill out the leading edge. Besides, the periodic blade loading drop is deflected to downstream direction and the flow fluctuation near the leading edge decrease significantly with the presence of synthetic jet.


2010 ◽  
Vol 132 (2) ◽  
Author(s):  
Juan Du ◽  
Feng Lin ◽  
Hongwu Zhang ◽  
Jingyi Chen

A numerical investigation on the self-induced unsteadiness in tip leakage flow is presented for a transonic fan rotor. NASA Rotor 67 is chosen as the computational model. It is found that under certain conditions the self-induced unsteadiness can be originated from the interaction of two important driving “forces:” the incoming main flow and the tip leakage flow. Among all the simulated cases, the self-induced unsteadiness exists when the size of the tip clearance is equal to or larger than the design tip clearance. The originating mechanism of the unsteadiness is clarified through time-dependent internal flow patterns in the rotor tip region. It is demonstrated that when strong enough, the tip leakage flow impinges the pressure side of neighboring blade and alters the blade loading significantly. The blade loading in turn changes the strength of the tip leakage flow and results in a flow oscillation with a typical signature frequency. This periodic process is further illustrated by the time-space relation between the driving forces. A correlation based on the momentum ratio of tip leakage flow over the incoming main flow at the tip region is used as an indicator for the onset of the self-induced unsteadiness in tip leakage flow. It is discussed that the interaction between shock wave and tip leakage vortex does not initiate the self-induced unsteadiness, but might be the cause of other types of unsteadiness, such as broad-banded turbulence unsteadiness.


Author(s):  
Juan Du ◽  
Feng Lin ◽  
Hongwu Zhang ◽  
Jingyi Chen

Despite the fact that the importance of steady tip leakage flows in rotor efficiency and stability has been long recognized and extensively studied, the unsteadiness of tip leakage flows became an interesting research topic only about 10 years ago. Many issues, such as its onset conditions, its role in compressor instability, etc. need to be further explored. In this paper, we present a numerical investigation on the influences of two important driving “forces”, the incoming main flow and the tip leakage flow, to clarify the originating mechanism of self-induced unsteadiness in transonic compressors. NASA Rotor 67 is chosen as the computational model. It is found that among all the simulated cases, the self-induced unsteadiness exists when the size of the tip clearance equals or larger than design tip clearance of the computational model. The time-dependent flow pattern in the rotor tip region is provided to illustrate that the main unsteady regions are on the blade’s pressure side that happens to be under the alternate influence of tip leakage flow and the incoming main flow. It is found the self-induced unsteady mechanism in the transonic rotor is the same as that in previously studied low-speed rotor. The interaction between shock wave and tip leakage vortex does not initiate the self-induced unsteadiness, but might be the cause of other unsteadiness, such as turbulent unsteadiness. A correlation based on the momentum ratio of tip leakage flow over the main incoming flow at the tip region is used as an indicator for the onset of the self-induced unsteadiness in tip leakage flow.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4168
Author(s):  
Botao Zhang ◽  
Xiaochen Mao ◽  
Xiaoxiong Wu ◽  
Bo Liu

To explain the effect of tip leakage flow on the performance of an axial-flow transonic compressor, the compressors with different rotor tip clearances were studied numerically. The results show that as the rotor tip clearance increases, the leakage flow intensity is increased, the shock wave position is moved backward, and the interaction between the tip leakage vortex and shock wave is intensified, while that between the boundary layer and shock wave is weakened. Most of all, the stall mechanisms of the compressors with varying rotor tip clearances are different. The clearance leakage flow is the main cause of the rotating stall under large rotor tip clearance. However, the stall form for the compressor with half of the designed tip clearance is caused by the joint action of the rotor tip stall caused by the leakage flow spillage at the blade leading edge and the whole blade span stall caused by the separation of the boundary layer of the rotor and the stator passage. Within the investigated varied range, when the rotor tip clearance size is half of the design, the compressor performance is improved best, and the peak efficiency and stall margin are increased by 0.2% and 3.5%, respectively.


Author(s):  
Rubén Bruno Díaz ◽  
Jesuino Takachi Tomita ◽  
Cleverson Bringhenti ◽  
Francisco Carlos Elizio de Paula ◽  
Luiz Henrique Lindquist Whitacker

Abstract Numerical simulations were carried out with the purpose of investigating the effect of applying circumferential grooves at axial compressor casing passive wall treatment to enhance the stall margin and change the tip leakage flow. The tip leakage flow is pointed out as one of the main contributors to stall inception in axial compressors. Hence, it is of major importance to treat appropriately the flow in this region. Circumferential grooves have shown a good performance in enhancing the stall margin in previous researches by changing the flow path in the tip clearance region. In this work, a passive wall treatment with four circumferential grooves was applied in the transonic axial compressor NASA Rotor 37. Its effect on the axial compressor performance and the flow in the tip clearance region was analyzed and set against the results attained for the smooth wall case. A 2.63% increase in the operational range of the axial compressor running at 100%N, was achieved, when compared with the original smooth wall casing configuration. The grooves installed at compressor casing, causes an increase in the flow entropy generation due to the high viscous effects in this gap region, between the rotor tip surface and casing with grooves. These viscous effects cause a drop in the turbomachine efficiency. For the grooves configurations used in this work, an efficiency drop of 0.7% was observed, compared with the original smooth wall. All the simulations were performed based on 3D turbulent flow calculations using Reynolds Averaged Navier-Stokes equations, and the flow eddy viscosity was determined using the two-equation SST turbulence model. The details of the grooves geometrical dimensions and its implementation are described in the paper.


Author(s):  
Wei Li ◽  
Wei-Yang Qiao ◽  
Kai-Fu Xu ◽  
Hua-Ling Luo

The tip leakage flow has significant effects on turbine in loss production, aerodynamic efficiency, etc. Then it’s important to minimize these effects for a better performance by adopting corresponding flow control. The active turbine tip clearance flow control with injection from the tip platform is given in Part-1 of this paper. This paper is Part-2 of the two-part papers focusing on the effect of five different passive turbine tip clearance flow control methods on the tip clearance flow physics, which consists of a partial suction side squealer tip (Partial SS Squealer), a double squealer tip (Double Side Squealer), a pressure side tip shelf with inclined squealer tip on a double squealer tip (Improved PS Squealer), a tip platform extension edge in pressure side (PS Extension) and in suction side (SS Extension) respectively. Combined with the turbine rotor and the numerical method mentioned in Part 1, the effects of passive turbine tip clearance flow controls on the tip clearance flow were sequentially simulated. The detailed tip clearance flow fields with different squealer rims were described with the streamline and the velocity vector in various planes parallel to the tip platform or normal to the tip leakage vortex core. Accordingly, the mechanisms of five passive controls were put in evidence; the effects of the passive controls on the turbine efficiency and the tip clearance flow field were highlighted. The results show that the secondary flow loss near the outer casing including the tip leakage flow and the casing boundary layer can be reduced in all the five passive control methods. Comparing the active control with the passive control, the effect brought by the active injection control on the tip leakage flow is evident. The turbine rotor efficiency could be increased via the rational passive turbine tip clearance flow control. The Improved PS Squealer had the best effect on turbine rotor efficiency, and it increased by 0.215%.


1993 ◽  
Author(s):  
S. Kang ◽  
C. Hirsch

Tip leakage flow in a linear compressor cascade of NACA 65-1810 profiles is investigated, for tip clearance levels of 1.0, 2.0 and 3.25 percent of chord at design and off-design flow conditions. Data, velocity and pressures, are collected from three transverse sections inside tip clearance and sixteen sections within flow passage. Tip separation vortex influence is identified from the data. Leakage flow mixing is clearly present inside the clearance and has a significant influence on the internal loss.


Author(s):  
Ali Akturk ◽  
Cengiz Camci

Ducted fans that are popular choices in vertical take-off and landing (VTOL) unmanned aerial vehicles (UAV) offer a higher static thrust/power ratio for a given diameter than open propellers. Although ducted fans provide high performance in many VTOL applications, there are still unresolved problems associated with these systems. Fan rotor tip leakage flow is a significant source of aerodynamic loss for ducted fan VTOL UAVs and adversely affects the general aerodynamic performance of these vehicles. The present study utilized experimental and computational techniques in a 22″ diameter ducted fan test system that has been custom designed and manufactured. Experimental investigation consisted of total pressure measurements using Kiel total pressure probes and real time six-component force and torque measurements. The computational technique used in this study included a 3D Reynolds-Averaged Navier Stokes (RANS) based CFD model of the ducted fan test system. RANS simulations of the flow around rotor blades and duct geometry in the rotating frame of reference provided a comprehensive description of the tip leakage and passage flow. The experimental and computational analysis performed for various tip clearances were utilized in understanding the effect of the tip leakage flow on aerodynamic performance of ducted fans used in VTOL UAVs. The aerodynamic measurements and results of the RANS simulations showed good agreement especially near the tip region.


Author(s):  
J. Luo ◽  
B. Lakshminarayana

The 3-D viscous flowfield in the rotor passage of a single-stage turbine, including the tip-leakage flow, is computed using a Navier-Stokes procedure. A grid-generation code has been developed to obtain embedded H grids inside the rotor tip gap. The blade tip geometry is accurately modeled without any “pinching”. Chien’s low-Reynolds-number k-ε model is employed for turbulence closure. Both the mean-flow and turbulence transport equations are integrated in time using a four-stage Runge-Kutta scheme. The computational results for the entire turbine rotor flow, particularly the tip-leakage flow and the secondary flows, are interpreted and compared with available data. The predictions for major features of the flowfield are found to be in good agreement with the data. Complicated interactions between the tip-clearance flows and the secondary flows are examined in detail. The effects of endwall rotation on the development and interaction of secondary and tip-leakage vortices are also analyzed.


Sign in / Sign up

Export Citation Format

Share Document