main flow
Recently Published Documents


TOTAL DOCUMENTS

505
(FIVE YEARS 110)

H-INDEX

26
(FIVE YEARS 5)

2021 ◽  
Vol 30 (4) ◽  
Author(s):  
Xi Mao ◽  
Sheng Huang ◽  
Yuchen Xu ◽  
Zhong Cheng ◽  
Jiehao Zhang

Nature-like fishway arrangements are commonly used because these structures imitate the characteristics of natural rivers and effectively allow fish to migrate past river sections blocked by hydraulic structures. In this paper, physical models were analyzed, and the velocity distributions of two different fishway structures (Types I and II) were compared. Results showed that the maximum mainstream velocity of the Type I structure was 5.3% lower than that of the Type II structure. However, the average mainstream velocity of the Type I structure was 21.1% greater than that of the Type II structure. The total per-cycle length of the mainstream path in the Type II structure was 2.1 times greater than that of the Type I structure, which indicated that the length of the mainstream path was somewhat proportional to the average velocity of the mainstream. When the flow rate was kept constant, increases in the velocity of the main flow associated with changes in the internal structure of the fishway decreased the average velocity of the main flow, while decreases in the total length of the flow path led to increases in the average velocity of the main flow. Due to frictional head loss along the fishway and local head loss, as well as the overlaps between these factors, the overall flow rate gradually decreased every cycle, despite periodic fluctuations.


2021 ◽  
pp. 1-22
Author(s):  
Wei Wang ◽  
Liu Boxing ◽  
Lu Jinling ◽  
Jianjun Feng ◽  
Wuli Chu ◽  
...  

Abstract Discrete tip injection is an effective method to enhance stability of compressors. This study compares the effects of injection parameters on compressor performance and underlying mechanisms in two different compressors. The transonic compressor is studied using unsteady simulations and the subsonic compressor is mainly investigated with experiment. Results show that tip injection improves stable operating range by 35.6% and 77.9% for the transonic compressor and subsonic compressor, respectively, without decreasing compressor efficiency. The effects of circumferential coverage percentage and injector throat height on compressor stability are similar in the two compressors when the injection velocity is double the velocity of main flow. The optimal injector throat height which is normalized by the tip clearance size is the same for the two compressors, and the best circumferential coverage percentage for the subsonic compressor is lower than that in the transonic compressor. For the two compressors, the adaption of the main flow to the discrete tip injection is unsteady, and the hysteresis effect that the recovery of tip blockage lags behind the recovery of tip leakage vortex accounts for the improved stability using partial coverage of injection. The injection efficiency, which is defined to quantify the improved quality of the flow field in the injection domain, is proven to determine the stall limits by studying the effects of several injection parameters. The guidelines built in the subsonic compressor can be used in the transonic compressor to design tip injection, but the optimal values of some injection parameters should be reconfirmed.


Author(s):  
Andriy Kravchuk ◽  
Oleksandr Kravchuk

A method of calculating the error that occurs when determining the flow rate in the final section of the pressure perforated drainage pipeline when it passes transit flow rate, based on the analysis of differential equations describing the fluid motion with variable flow rate in such pipelines is proposed in the paper. The analysis is presented in dimensionless form. The impact of transit flow on the main flow is estimated using the values ​​of the drainage pipeline resistance coefficient ζl and the generalized parameter of the perforated drain A, which takes into account its constructive and filtration characteristics. The obtained calculation formulas are quite simple and easy to use. The proposed method allows to perform calculations of drainage pipelines that operate in the presence of transit flow rate, according to the method of these pipes calculation that dispose drain water without passing transit. Herewith, the possible error, which includes in the calculation results, determines. To illustrate the obtained dependences, the corresponding graphs are given in the paper. The results of the analysis allow to determine the limits within which a simplified method of calculating these pipes can be used and the error, that occurs, can be estimated


Author(s):  
Shigehiro Hashimoto ◽  
Taketo Matsumoto ◽  
Shogo Uehara

The change in direction of a cell flowing over an oblique micro groove has been analyzed in vitro. The micro flow-channel (0.05 mm height x 1 mm width x 25 mm length) with oblique micro grooves (4.5 μm depth) was manufactured on a polydimethylsiloxane (PDMS) disk by the micromachining technique. The angle between the main flow direction and the longitudinal axis of the groove is 45 degrees. The effect of variation of the groove width (0.03 mm, 0.04 mm, and 0.05 mm) was studied. Myoblasts (C2C12: mouse myoblast cell line) were used in the test. The main flow velocity (0.02 mm/s < vx < 0.23 mm/s) of the medium was controlled by the pressure difference between the inlet and the outlet. The shape of each flowing cell was tracked on a movie recorded by the camera attached to the eyepiece of the microscope. The experimental results show that the change of the direction of each cell by each groove depends on the shape of the cell, which depends on both the shape of the cell and the width of the groove.


Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1937
Author(s):  
Bin Yang ◽  
Hong Lei ◽  
Yingshi Xu ◽  
Kun Liu ◽  
Peng Han

In the continuous process, fluid flow is an important physical phenomena in the tundish, as it affects the process of heat transfer, bubble motion and inclusion collision-coalescence and grow up. This paper undertakes a detailed numerical investigation of fluid flow characteristics in the tundish with and without induction heating. The individual unit method and the volume subtraction model are applied to analyze the flow characteristics. A quantitative evaluation method of flow characteristics is proposed to investigate the flow characteristics. In the tundish with and without induction heating, firstly, the main flow behavior of molten steel is mixed flow in the receiving chamber; secondly, the main flow behavior of molten steel is plug flow in the channel; lastly, the main flow pattern is mixed flow, and the minor flow pattern is plug flow in the discharging chamber. The method of the volume subtraction model is an effective way to analyze the flow characteristics in the tundish with channel induction heating.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Hao Jia ◽  
Yuqi Wang ◽  
Zuchao Zhu ◽  
Xianghui Su ◽  
Zhenji Tang

Along with the pressing demand for the long-distance transportation of coarse particles in the deep-sea mining industry, evaluating the slurry pump’s passing through and erosive wear by studying the particle motion characteristics and the slurry behavior is becoming increasingly important. Research on the influence of leakage flow through the clearance and balancing devices on the motion characteristic of granular grain flow is of great significance but has been seldom studied. This study coupled the discrete element method with the CFD method to investigate the comprehensive effect of a double-stage slurry pump’s main flow and leakage flow on the motion characteristics of particles with a 10 mm diameter. Results show that the leakage flow occupation in main flow falls from 26%–27% to 8%–9% for the two stages, with the flow rate increasing from 80 m3/h to 200 m3/h. In the first stage with leakage, accumulation of coarse particles was observed at the impeller eye, which should be paid much attention to slurry pumps’ operation to eliminate the chance of blockage. In the nonleak situation, although the increment of the average kinetic energy of particles through the impeller is more significant than in the leak case, most of them dissipate primarily by more than 10% collision in the bowl diffuser. In the leak or nonleak case, the average kinetic energy of particles was more than twice through the first stage but only 1.1 times through the second stage. The selection of stages in the slurry pump design should consider the limitation of particle velocity improvement.


2021 ◽  
Vol 11 (2) ◽  
pp. 153
Author(s):  
Sri Oktamuliani ◽  
Kaoru Hasegawa ◽  
Tadanori Minagawa ◽  
Yoshifumi Saijo

<span>Left ventricular (LV) blood flow analysis may play an essential role in evaluating cardiac function besides the classical analysis of wall motion. Echodynamography is an imaging method in which two-dimensional (2D) blood flow vectors are deduced by blood flow information obtained by color Doppler echocardiography. Echodynamography has provided useful information on the blood flow pattern in healthy and abnormal LV. The main flow axis line (MFAL) is defined as a maximum velocity magnitude of blood flow from the LV's apex to LV's outflow, which is a new hemodynamic parameter for cardiac assessment. The present study's objective is to compare blood flow patterns between healthy and abnormal LV by investigating the MFAL and its correlation to vorticity and velocity distribution on MFAL. This study enrolled 12 participants, four healthy volunteers, and eight abnormal patients. Echodynamography analyzed frame by frame Doppler image of apical three-chamber views. The results showed MFAL superimposed on vorticity mapping during ventricular ejection and MFAL path coincide with the irrotational flow of zero vorticity path, ω = 0. A significant difference was observed in the velocity distribution curve (VDC) on the MFAL during early, mid, and late systoles compared to healthy and abnormal LV. VDC showed the linear upward curve and the highest velocity magnitude during the early systole phase in healthy LV. In contrast with abnormal LV, VDC showed the downward convex curve and the highest velocity magnitude during mid systole phase. Furthermore, the gradient and slope angle of the VDC on the MFAL was compared. The result showed that the maximum gradient and slope angle were not significantly different between healthy and abnormal LV. In conclusion, the study of MFAL and the correlation to vorticity based on the Echodynamography computational program provides additional insights for representing a cardiac function, and thus, the clinical implications of MFAL warrant further investigation.</span>


2021 ◽  
Vol 2057 (1) ◽  
pp. 012126
Author(s):  
E V Usov ◽  
P D Lobanov ◽  
I A Klimonov ◽  
T V Sycheva ◽  
V I Chuhno ◽  
...  

Abstract The presented work is dedicated to the development of approaches to simulate cladding melt relocation along the surface of the fuel pin. Development of the approaches is based on the results of the experiments carried out at the NSI RAS and IT SB RAS. Features of the melt relocation are studied in the experiments. It is demonstrated that the laminar film flow regime in the heated part of the fuel simulator is the main flow regime. Model of the melt relocation is constructed. This model is the part of the SAFR module of the EUCLID/V2 coupled code. It is shown that the proposed approaches allow simulating the melt relocation with good accuracy.


2021 ◽  
Vol 2057 (1) ◽  
pp. 012081
Author(s):  
A V Boiko ◽  
V I Borodulin ◽  
A V Ivanov ◽  
S V Kirilovskiy ◽  
D A Mischenko ◽  
...  

Abstract The laminar-turbulent transition in the boundary layer of a 45° swept wing model installed at zero attack angle in the test section of a subsonic wind-tunnel was detected with the help of an infrared camera. The camera recorded sequences of frames, the evolution of the preheated model surface temperature acquired and used for differentiating between the laminar and turbulent regions. The transition onset was evaluated at both sides of the model. Corresponding main flow computations in the virtual wind tunnel test section were performed at the same flow conditions with ANSYS Fluent. The computed main-flow velocity profiles along inviscid streamlines were used for analysis of hydrodynamic stability of the boundary layer with respect to Tollmien-Schlichting waves and stationary cross-flow vortices to obtain N-factor distributions along the model chord. A comparison of the experimental and the computed transition onsets was performed.


Sign in / Sign up

Export Citation Format

Share Document