Effect of Thread Pitch and Initial Tension on the Self-Loosening of Threaded Fasteners
A mathematical model and an experimental procedure are presented to study the self-loosening phenomenon of threaded fasteners that are subjected to cyclic transverse loads. The study investigates the effect of thread pitch, initial bolt tension, and the amplitude of the external excitation on the loosening of a single-bolt joint. The rate of drop in the joint clamp load (fastener tension) per cycle, as well as the total number of cycles that would cause the complete loss of clamp load, are monitored. In the mathematical model, the differential equations of linear and angular motion of the bolt are formulated in terms of the system properties and the external cyclic transverse excitation. Numerical integration of the equation of angular motion provides the bolt rotation in the loosening direction, which causes the partial or full loss of the clamp load. An iterative MATLAB code is developed and used for the calculation of tension loss in the fastener tension due to the self-loosening. Analytical and experimental results are discussed.