friction torque
Recently Published Documents


TOTAL DOCUMENTS

547
(FIVE YEARS 137)

H-INDEX

22
(FIVE YEARS 5)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 587
Author(s):  
Changsong Zheng ◽  
Zhiwei Ma ◽  
Liang Yu ◽  
Xu Wang ◽  
Liangjie Zheng ◽  
...  

To study the influence of nano-additives on the friction-wear characteristics of friction materials, the nano-sized silicon carbide particles which have excellent chemical and physical properties are considered to add in composite to form the modified friction material. The influence of the silicon carbide nanoparticles (SCN) on the friction-wear characteristics of copper-based friction materials (CBFM) is investigated via the SAE#2 (made in Hangzhou, China) clutch bench test with the applied pressure, rotating speed, and automatic transmission fluid (ATF) temperature taken into account. Moreover, the variations of friction torque and temperature are considered to evaluate the friction performance, and the variable coefficient is employed to describe the friction stability. The wear characteristics of friction materials are investigated by the disc changes in thickness and micro-morphology. The results show that the CBFM with SCN can provide a higher friction torque, which increased by 30% to 50% compared with CBFM. The variable coefficient of CBFM with SCN changes from 674 to 52 with the rotating speed raised from 600 rpm to 3000 rpm, which shows that the friction stability is relatively worse. Furthermore, the micromorphology shows that the CBFM with SCN has lower porosity and surface roughness, which increases the microscopic contact area and the coefficient of friction (COF). Simultaneously, the reduction in porosity also leads to a decrease in the cooling quality, bringing about a rapid temperature rise. Thus, the wear amount of CBFM with SCN increases significantly, especially for the friction disc in the axial middle position.


Author(s):  
Shili Chang ◽  
Yuanfeng Xia ◽  
Jian Pang ◽  
Liang Yang

Due to friction characteristics of clutch, the driveline is prone to cause a judder during vehicle starting, and then to cause the vehicle body to vibrate, which affects driving quality. In order to analyze the judder phenomenon, a nonlinear numerical friction model based on the Gaussian friction model is established in this paper. For the driveline of a front-wheel-drive vehicle, a five-degree-of-freedom (5DOF) lumped parameter model including a nonlinear friction element is established. The complex mode of the driveline during the clutch in slip condition is calculated. The key parameters affecting the driveline stability are analyzed. The self-excited judder and pressure-induced judder of the driveline are numerically simulated, and the corresponding causes are analyzed. The nonlinear friction torque of the clutch is also calculated. Furthermore, the effects of the key parameters such as the torsional stiffness and damping of the clutch and drive shaft suppressing the self-excited judder and pressure-induced judder are numerically studied respectively. Compared with the widely used Karnopp friction model, the nonlinear numerical friction model established in this paper comprehensively includes the stribeck effect in slip and the friction torque characteristics in stick. The phenomena of the judder and stick-slip of the driveline during vehicle starting are more accurately simulated. The simulation results are in good agreement with the experimental results, which verify the accuracy and effectiveness of the dynamic model including the nonlinear friction element established in this paper.


Author(s):  
Bao Tri Diep ◽  
Quoc Hung Nguyen ◽  
Thanh Danh Le

The purpose of this paper is to design a control algorithm for a 2-DoF rotary joystick model. Firstly, the structure of the joystick, which composes of two magneto-rheological fluid actuators (shorten MRFA) with optimal configuration coupled perpendicularly by the gimbal mechanism to generate the friction torque for each independent rotary movement, is introduced. The control strategy of the designed joystick is then suggested. Really, because of two independent rotary movements, it is necessary to design two corresponding controllers. Due to hysteresis and nonlinear dynamic characteristics of the MRFA, controllers based an accurate dynamic model are difficult to realize. Hence, to release this issue, the proposed controller (named self-turning fuzzy controllers-STFC) will be built through the fuzzy logic algorithm in which the parameters of controllers are learned and trained online by Levenberg-Marquardt training algorithm. Finally, an experimental apparatus will be constructed to assess the effectiveness of the force feedback controls. Herein, three experimental cases are performed to compare the control performance of open-loop and close-loop control method, where the former is done through relationship between the force at the knob and the current supplied to coil while the latter is realized based on the proposed controller and PID controller. The experimental results provide strongly the ability of the proposed controller, meaning that the STFC is robust and tracks well the desirable force with high accuracy compared with both the PID controller and the open-loop control method.


2021 ◽  
Vol 11 (24) ◽  
pp. 12081
Author(s):  
Tiewei Sun ◽  
Min Wang ◽  
Xiangsheng Gao ◽  
Yingjie Zhao

In order to eliminate the calculation error of the Hertzian elastohydrodynamic contact stress due to the asymmetry of the contact region of the helix raceway, a non-Hertzian elastohydrodynamic contact stress calculation method based on the minimum excess principle was proposed. Firstly, the normal contact stresses of the screw raceway and the nut raceway were calculated by the Hertzian contact theory and the minimum excess principle, respectively. Subsequently, the Hertzian solution and the non-Hertzian solution of the elastohydrodynamic contact stress could be determined by the Reynolds equation under different helix angles and screw speeds. Finally, the friction torque test of the double-nut ball screws was designed and implemented on a self-designed bed for validation of the proposed method. The comparison showed that the experimental friction torque was the good agreement with the simulated friction torque, which verified the effectiveness and correctness of the non-Hertzian elastohydrodynamic contact stress calculation method. Under the large helix angle, the calculation accuracy of asperity contact stress for the non-Hertzian solution was more accurate than that of the Hertzian solution at the contact region of ball screws. Therefore, the non-Hertzian elastohydrodynamic contact stress considering the asymmetry of the raceway contact region could more accurately analyze the wear depth of the high-speed ball screws.


2021 ◽  
Vol 68 (5) ◽  
pp. 24-31
Author(s):  
Susanne Hahn ◽  
Simon Feldmeth

Grease-lubricated sealing systems show starved lubrication much more frequently than oil lubricated sealing systems. Different greases provide different lubricity to the sealing system. A test and evaluation method was developed that allows to assess the lubricity of different greases and to compare them with each other. The test and evaluation method consists of a test run and a subsequent analysis of the test components. The test run comprises a 24-hour speed collective and is performed on a test rig using real sealing system components. For the evaluation method, eight criteria are analysed, which are rated suitable for evaluating starved lubrication. The criteria include parameters measured during the test run, such as friction torque and temperature, as well as parameters inspected in the subsequent examination of all test components. All criteria are assessed and combined to an overall score, that allows to directly compare different greases with each other. The test and evaluation method developed reveals significant differences between 23 greases examined. Thus, the lubricity of greases in sealing systems can be analysed and compared much more quickly than in the past. Thanks to the rapid testing and focused evaluation of the relevant criteria, greases can be tested much more cost- and resource-efficiently than before.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7522
Author(s):  
Linqing Bai ◽  
Pengcheng Zhang ◽  
Zulfiqar Ahmad Khan

Seal performance of a novel gas mechanical face seal with semi salix leaf textures was introduced and theoretically investigated with the purpose of enhancing hydrostatic and hydrodynamic opening performance. First, a theoretical model of a laser surface textured gas mechanical face seal with semi salix leaf textures was developed. Second, the impact of operating and texturing parameters on open force, leakage, and friction torque was numerically investigated and has been discussed based on gas lubrication theory. Numerical results demonstrate that the semi salix leaf textured gas face seal has larger hydrostatic and hydrodynamic effects than the semi ellipse textured seal because of the effect of the inlet groove. All semi salix leaf textured surfaces had better open performance than the semi ellipse textured surface, which means that the inlet groove plays an important role in improving open performance and consequently decreasing contact friction during the start-up stage. Texturing parameters also influenced the seal performance of thee semi salix leaf textured gas face seal. When the inclination angle was 50°, the radial proportion of the inlet groove was 0.8, the dimple number was 9, and the open force resulted in the maximum value. This research has demonstrated the positive effects of the applications of a semi salix leaf textured gas mechanical face seal that combines the excellent hydrostatic and hydrodynamic effects of groove texture and the excellent wear resistance of microporous textures.


Mathematics ◽  
2021 ◽  
Vol 9 (23) ◽  
pp. 3146
Author(s):  
Hexu Yang ◽  
Xiaopeng Li ◽  
Jinchi Xu ◽  
Dongyang Shang ◽  
Xingchao Qu

With the development of robot technology, integrated joints with small volume and convenient installation have been widely used. Based on the double inertia system, an integrated joint motor servo system model considering gear angle error and friction interference is established, and a joint control strategy based on BP neural network and pole assignment method is designed to suppress the vibration of the system. Firstly, the dynamic equation of a planetary gear system is derived based on the Lagrange method, and the gear vibration of angular displacement is calculated. Secondly, the vibration displacement of the sun gear is introduced into the motor servo system in the form of the gear angle error, and the double inertia system model including angle error and friction torque is established. Then, the PI controller parameters are determined by pole assignment method, and the PI parameters are adjusted in real time based on the BP neural network, which effectively suppresses the vibration of the system. Finally, the effects of friction torque, pole damping coefficient and control strategy on the system response and the effectiveness of vibration suppression are analyzed.


Tribologia ◽  
2021 ◽  
Vol 296 (2) ◽  
pp. 57-64
Author(s):  
Waldemar Tuszyński ◽  
Marian Szczerek ◽  
Jan Wulczyński ◽  
Andrzej Gospodarczyk ◽  
Remigiusz Michalczewski ◽  
...  

A new test rig for tribological tests was developed and manufactured. It consists of a mobile device for measurement of the start-up friction torque of transmissions, in particular planetary gearboxes, and the friction torque in dynamically steady conditions, as well as a climatic chamber to stabilize the temperature of the tested gearbox in its extreme range: from -50 to +50°C. In the series of devices for tribological tests, developed and manufactured at the Institute, the new test rig is marked with the symbol T-34. The verification results correspond with the churning losses related to the viscosity characteristics of the lubricating oils. As the temperature increases, both the start-up friction torque and the friction torque under dynamically steady conditions decrease.


2021 ◽  
Vol 11 (23) ◽  
pp. 11299
Author(s):  
Liangjie Zheng ◽  
Biao Ma ◽  
Man Chen ◽  
Liang Yu ◽  
Qian Wang

Clutch disengaging dynamic characteristics, including the disengaging duration and the variations of friction pair gaps and friction torque, are crucial to the shifting control of an automatic transmission. In the present paper, the influence of lubrication oil (ATF) temperature on disengaging dynamic characteristics is investigated through a comprehensive numerical model for the clutch disengaging process, which considers the hydrodynamic lubrication, the asperity contact, the heat transfer, the spline resistance, and the impact between the piston and clutch hub. Moreover, the non-uniformity coefficient (NUC) is proposed to characterize the disengaging uniformity of friction pairs. As the ATF temperature increases from 60 °C to 140 °C, the clutch disengaging duration shortens remarkably (shortened by 55.1%); besides, the NUC sees a decreasing trend before a slight increase. When the ATF temperature is 80 °C, the distribution of friction pair gaps is most uniform. During the disengaging process, the increase of ATF temperature not only accelerates the change of the lubrication status between friction pairs but also contributes to the decrease of contact torque and hydrodynamic torque. This research demonstrates for the first time, evidence for clutch disengaging dynamic characteristics with the consideration of ATF temperature.


Sign in / Sign up

Export Citation Format

Share Document