A Fully Wet and Fully Dry Tiny Circular Fin Method for Heat and Mass Transfer Characteristics for Plain Fin-and-Tube Heat Exchangers Under Dehumidifying Conditions

2006 ◽  
Vol 129 (9) ◽  
pp. 1256-1267 ◽  
Author(s):  
Worachest Pirompugd ◽  
Chi-Chuan Wang ◽  
Somchai Wongwises

This study proposes a new method, namely the “fully wet and fully dry tiny circular fin method,” for analyzing the heat and mass transfer characteristics of plain fin-and-tube heat exchangers under dehumidifying conditions. The present method is developed from the tube-by-tube method proposed in the previous study by the same authors. The analysis of the fin-and-tube heat exchangers is carried out by dividing the heat exchanger into many tiny segments. A tiny segment will be assumed with fully wet or fully dry conditions. This method is capable of handling the plain fin-and-tube heat exchanger under fully wet and partially wet conditions. The heat and mass transfer characteristics are presented in dimensionless terms. The ratio of the heat transfer characteristic to mass transfer characteristic is also studied. Based on the reduced results, it is found that the heat transfer and mass transfer characteristics are insensitive to changes in fin spacing. The influence of the inlet relative humidity on the heat transfer characteristic is rather small. For one and two row configurations, a considerable increase of the mass transfer characteristic is encountered when partially wet conditions take place. The heat transfer characteristic is about the same in fully wet and partially wet conditions provided that the number of tube rows is equal to or greater than four. Correlations are proposed to describe the heat and mass characteristics for the present plain fin configuration.

2014 ◽  
Vol 6 ◽  
pp. 637052 ◽  
Author(s):  
Xuehong Wu ◽  
Lihua Feng ◽  
Dandan Liu ◽  
Hao Meng ◽  
Yanli Lu

The dimpled fin has excellent heat transfer performance and has attracted a lot of attention to apply on the fin and tube heat exchanger. A study presents to investigate the effects of number of tube rows on the air-side heat transfer characteristics of dimpled fin for velocity ranging from 1 to 3 m/s. The Q/Δ P and Q/((Δ P × V)) are used to evaluate the heat transfer performance of the heat exchanger. The results show that the dimpled arrangement can change the mainstream direction, increase the disturbance, and enhance the heat transfer. With the increase of the number of tube rows, the average Nusselt number decreases and Q/Δ P and Q/((Δ P × V)) increase gradually. Compared with the multipipe tube rows, the performance of two-row tube is better.


2015 ◽  
Vol 137 (3) ◽  
Author(s):  
Worachest Pirompugd ◽  
Chi-Chuan Wang ◽  
Somchai Wongwises

For evaluating performance of fin-and-tube heat exchangers under dehumidifying conditions, the recent lumped approach models are based on the enthalpy potential or equivalent dry bulb temperature. This study proposes a new lumped approach model based on the dry bulb temperature difference. The concept of dry bulb temperature was first presented by McQuiston for derivation of fin efficiency under dehumidifying conditions in 1975. This concept is simpler than the concepts of enthalpy potential and equivalent dry bulb temperature. Nevertheless, it cannot be found that this concept is applied to the fin-and-tube heat exchangers. Moreover, this study also presents the finite circular fin method (FCFM) based on the dry bulb temperature and equivalent dry bulb temperature. The FCFM was first presented in our published literature but it was based on the enthalpy potential. The FCFM is done by dividing the fin-and-tube heat exchanger into many small segments. Then, the segments are divided into three cases: fully dry condition, fully wet condition, and partially wet condition. From the results, the new lumped approach model based on dry bulb temperature gives a good result. It is the simplest method for evaluating heat transfer performance of fin-and-tube heat exchangers under fully wet conditions. For the FCFM, the heat and mass transfer characteristics obtained by dry bulb temperature and equivalent dry bulb temperature are nearly the same as those obtained by the enthalpy potential. However, the heat and mass transfer characteristics by the FCFM based on equivalent dry bulb temperature are higher than those obtained by the FCFM based on dry bulb temperature. This is because of the effect of the nonconstant term in the two methods. The correlations applicable for both fully wet and partially wet conditions for the FCFMs based on equivalent dry bulb temperature and dry bulb temperature are proposed to describe the heat and mass transfer characteristics for the present plain fin configuration.


2021 ◽  
pp. 76-76
Author(s):  
Sakthivel Perumal ◽  
Vijayan Venkatraman ◽  
Rajkumar Sivanraju ◽  
Addisalem Mekonnen ◽  
Sathish Thanikodi ◽  
...  

Nowadays ensure the performance of heat exchanger is one of the toughest roles in industries. In this work focused on improve the performance of shell and tube heat exchangers by reducing the pressure drop as well as raising the overall heat transfer. This work considered as a different nanoparticles such as Aluminium oxide (Al2O3), Silicon dioxide (SiO2), Titanium oxide (TiO2) and Zirconium dioxide (ZrO2) to form a nanofluids. This nanofluids possesses high thermal conductivity by using of this increase the heat transfer rate in shell and tube heat exchanger. The selected nanofluids are compared to base fluid based on the thermophysical properties as well as heat transfer characteristics. All the heat transfer characteristics are improved by applying of nanofluids particularly higher results are obtained with using of TiO2 and Al2O3 compared to SiO2 and ZrO2. Mixing of nanoparticles increased in terms of volume percentage it will be increases the all Heat transfer characteristics as well as performance of the heat exchanger.


2008 ◽  
Vol 44 (11) ◽  
pp. 1305-1313 ◽  
Author(s):  
Hideo Inaba ◽  
Fujio Komatsu ◽  
Akihiko Horibe ◽  
Naoto Haruki ◽  
Akito Machida

Author(s):  
Yao Li ◽  
Haiqing Si ◽  
Jingxuan Qiu ◽  
Yingying Shen ◽  
Peihong Zhang ◽  
...  

Abstract The plate-fin heat exchanger has been widely applied in the field of air separation and aerospace due to its high specific surface area of heat transfer. However, the low heat transfer efficiency of its plate bundles has also attracted more attention. It is of great significance to optimize the structure of plate-fin heat exchanger to improve its heat transfer efficiency. The plate bundle was studied by combining numerical simulation with experiment. Firstly, according to the heat and mass transfer theory, the plate bundle calculation model of plate-fin heat exchanger was established, and the accuracy of the UDF (User-Defined Functions) for describing the mass and heat transfer was verified. Then, the influences of fin structure parameters on the heat and mass transfer characteristics of channel were discussed, including the height, spacing, thickness and length of fins. Finally the influence of various factors on the flow field performance under different flow states was integrated to complete the optimal design of the plate bundle.


2014 ◽  
Vol 136 (12) ◽  
Author(s):  
Raj Nandkeolyar ◽  
Peri K. Kameswaran ◽  
Sachin Shaw ◽  
Precious Sibanda

We investigated heat and mass transfer on water based nanofluid due to the combined effects of homogeneous–heterogeneous reactions, an external magnetic field and internal heat generation. The flow is generated by the movement of a linearly stretched surface, and the nanofluid contains nanoparticles of copper and gold. Exact solutions of the transformed model equations were obtained in terms of hypergeometric functions. To gain more insights regarding subtle impact of fluid and material parameters on the heat and mass transfer characteristics, and the fluid properties, the equations were further solved numerically using the matlab bvp4c solver. The similarities and differences in the behavior, including the heat and mass transfer characteristics, of the copper–water and gold–water nanofluids with respect to changes in the flow parameters were investigated. Finally, we obtained the numerical values of the skin friction and heat transfer coefficients.


Sign in / Sign up

Export Citation Format

Share Document