CFD-based structure optimization of plate bundle in plate-fin heat exchanger considering flow and heat transfer performance

Author(s):  
Yao Li ◽  
Haiqing Si ◽  
Jingxuan Qiu ◽  
Yingying Shen ◽  
Peihong Zhang ◽  
...  

Abstract The plate-fin heat exchanger has been widely applied in the field of air separation and aerospace due to its high specific surface area of heat transfer. However, the low heat transfer efficiency of its plate bundles has also attracted more attention. It is of great significance to optimize the structure of plate-fin heat exchanger to improve its heat transfer efficiency. The plate bundle was studied by combining numerical simulation with experiment. Firstly, according to the heat and mass transfer theory, the plate bundle calculation model of plate-fin heat exchanger was established, and the accuracy of the UDF (User-Defined Functions) for describing the mass and heat transfer was verified. Then, the influences of fin structure parameters on the heat and mass transfer characteristics of channel were discussed, including the height, spacing, thickness and length of fins. Finally the influence of various factors on the flow field performance under different flow states was integrated to complete the optimal design of the plate bundle.

Author(s):  
H. Zabiri ◽  
V. R. Radhakrishnan ◽  
M. Ramasamy ◽  
N. M. Ramli ◽  
V. Do Thanh ◽  
...  

The Crude Preheat Train (CPT) is a set of large heat exchangers which recover the waste heat from product streams back to preheat the crude oil. The overall heat transfer coefficient in these heat exchangers may be significantly reduced due to fouling. One of the major impacts of fouling in CPT operation is the reduced heat transfer efficiency. The objective of this paper is to develop a predictive model using statistical methods which can a priori predict the rate of the fouling and the decrease in heat transfer efficiency in a heat exchanger in a crude preheat train. This predictive model will then be integrated into a preventive maintenance diagnostic tool to plan the cleaning of the heat exchanger to remove the fouling and bring back the heat exchanger efficiency to their peak values. The fouling model was developed using historical plant operating data and is based on Neural Network. Results show that the predictive model is able to predict the shell and tube outlet temperatures with excellent accuracy, where the Root Mean Square Error (RMSE) obtained is less than 1%, correlation coefficient R2 of approximately 0.98 and Correct Directional Change (CDC) values of more than 90%. A preliminary case study shows promising indication that the predictive model may be integrated into a preventive maintenance scheduling for the heat exchanger cleaning.


2006 ◽  
Vol 129 (9) ◽  
pp. 1256-1267 ◽  
Author(s):  
Worachest Pirompugd ◽  
Chi-Chuan Wang ◽  
Somchai Wongwises

This study proposes a new method, namely the “fully wet and fully dry tiny circular fin method,” for analyzing the heat and mass transfer characteristics of plain fin-and-tube heat exchangers under dehumidifying conditions. The present method is developed from the tube-by-tube method proposed in the previous study by the same authors. The analysis of the fin-and-tube heat exchangers is carried out by dividing the heat exchanger into many tiny segments. A tiny segment will be assumed with fully wet or fully dry conditions. This method is capable of handling the plain fin-and-tube heat exchanger under fully wet and partially wet conditions. The heat and mass transfer characteristics are presented in dimensionless terms. The ratio of the heat transfer characteristic to mass transfer characteristic is also studied. Based on the reduced results, it is found that the heat transfer and mass transfer characteristics are insensitive to changes in fin spacing. The influence of the inlet relative humidity on the heat transfer characteristic is rather small. For one and two row configurations, a considerable increase of the mass transfer characteristic is encountered when partially wet conditions take place. The heat transfer characteristic is about the same in fully wet and partially wet conditions provided that the number of tube rows is equal to or greater than four. Correlations are proposed to describe the heat and mass characteristics for the present plain fin configuration.


2014 ◽  
Vol 1008-1009 ◽  
pp. 927-933
Author(s):  
Hai Jiang Yang ◽  
Ming Li ◽  
Xiao Ye Xue ◽  
Yan Liu ◽  
Kui Huang

In this paper, the heat transfer rate of parallel flow heat exchanger was obtained in the condition of non-uniform flow distribution by 3D numerical simulation. The maximum theoretical heat transfer rate of parallel flow heat exchanger was obtained through 1D calculation. Ultimately, the correlation of the influence of non-uniform flow distribution on heat transfer efficiency was obtained by the comparative analysis of non-uniform flow distribution and heat transfer efficiency and regression calculation. It was found that the forecasted heat transfer efficiency error of correlation was within 2%.


Author(s):  
R. Z. Wang ◽  
Z. Z. Xia ◽  
L. W. Wang ◽  
Z. S. Lu ◽  
S. L. Li ◽  
...  

Adsorption refrigeration and heat pump systems have been considered as very important means for the efficient use of low grade thermal energy in the temperature range of 60–150°C. Sorption systems are merely heat exchanger based thermodynamic systems, and therefore a good design to optimize heat and mass transfer with reaction or sorption processes is very important for high performance of the systems. Studies on heat and mass transfer enhancement in adsorption beds have been done extensively. Notable techniques is whereby the adsorbent bed is fitted with finned heat exchanger embedded with adsorbent particles, or the adsorbent particles may be compressed and solidified and then coupled with finned tube or plate heat exchangers. The use of expanded graphite seems to be an effective method to improve both heat and mass transfer in the reaction bed. Studies have also shows the need to enhance the heat transfer in adsorption bed to match with the heat transfer of thermal fluids. Use of heat pipes and good thermal loop design could yield higher thermal performances of a sorption system, when coupled with adsorption beds to provide heating and cooling to the beds. A novel design with passive evaporation, known as rising film evaporation coupled with a gravity heat pipe was introduced for high cooling output. It has also been shown that heat and mass recovery in the internal sorption systems is critical, and novel arrangement of thermal fluid and refrigerant may result in high performance sorption systems. Based upon the above researches, various sorption systems have been developed, and high efficient performances have been reached. Typical sorption systems include (1) A silica gel-water adsorption water chillier with a COP about 0.55 when powered with 80°C hot water, (2) A CaCl2-ammonia adsorption refrigerator with a COP over 0.3 at −20 °C when powered with 120 °C water vapor, which has a specific cooling power about 600 W/kg-adsorbent. The above mentioned systems have shown that solid sorption systems have become market potential products, and low grade thermal energy, which is usually considered as waste heat, could be utilized to provide high grade cooling. This paper gives details of high efficient solid sorption systems recently developed, their heat transfer design, thermodynamic system coupling, and performance test results. Some examples of low grade thermal powered cooling systems are also presented.


2015 ◽  
Vol 19 (4) ◽  
pp. 1397-1402 ◽  
Author(s):  
Zhao-Chun Wu ◽  
Xiang-Ping Zhu

A comparison of heat transfer efficiency between the heat pipe and tube bundles heat exchanger is made based on heat transfer principle and the analysis of thermal characteristics. This paper argues that although heat pipe has the feature of high axial thermal conductivity, to those cases where this special function of heat transfer is unnecessary, heat pipe exchanger is not a high efficient heat exchanger when it is just used as a conventional heat exchanger in the industrial fields. In turn, there are some deficiencies for heat pipe exchanger, such as complicated manufacturing process, critical requirements for manufacturing materials, etc. which leads to a higher cost in comparison to a tubular heat exchanger. Nonetheless, due to its diverse structural features and extraordinary properties, heat pipe exchanger still has wide applications on special occasions.


1998 ◽  
Vol 120 (4) ◽  
pp. 299-304 ◽  
Author(s):  
L. Rosario ◽  
M. M. Rahman

The aim of this paper is the analysis of heat transfer in a radial fin assembly during the process of dehumidification. An individual finned tube geometry is a reasonable representation of heat exchangers used in air conditioning. The condensation process involves both heat and mass transfer and the cooling takes place by the removal of sensible as well as latent heat. The ratio of sensible to total heat is an important quantity that defines the heat transfer process during a dehumidifier operation. A one-dimensional model for heat transfer in the fin and the heat exchanger block is developed to study the effects of condensation on the fin surface. The combined heat and mass transfer process is modeled by incorporating the ratio of sensible to total heat in the formulation. The augmentation of heat transfer due to fin was established by comparing the heat transfer rate with and without fins under the same operating conditions. Calculations were carried out to study the effects of relative humidity and dry bulb temperature of the incoming air, and cold fluid temperature inside the coil on the performance of the heat exchanger. An analysis of the overall efficiency for the assembly was also done. Results were compared to those under dry conditions, wherever appropriate. Comparison between present results and those published for rectangular as well as radial fins under fully wet conditions were made. These comparisons established the validity of the present model. It was found that the heat transfer rate increased with increment in both dry bulb temperature and relative humidity of the air. The augmentation factor, however, decreased with increment in relative humidity and the dry bulb temperature. The fin efficiency decreased with relative humidity.


Sign in / Sign up

Export Citation Format

Share Document