Elastic Fields in a Polygon-Shaped Inclusion With Uniform Eigenstrains

1997 ◽  
Vol 64 (3) ◽  
pp. 495-502 ◽  
Author(s):  
H. Nozaki ◽  
M. Taya

In this paper the elastic fields in an arbitrary, convex polygon-shaped inclusion with uniform eigenstrains are investigated under the condition of plane strain. Closed-form solutions are obtained for the elastic fields in a polygon-shaped inclusion. The applications to the evaluation of the effective elastic properties of composite materials with polygon-shaped reinforcements are also investigated for both dilute and dense systems. Numerical examples are presented for the strain field, strain energy, and stiffness of the composites with polygon shaped fibers. The results are also compared with some existing solutions.

2017 ◽  
Vol 12 (1) ◽  
pp. 147-184 ◽  
Author(s):  
Fei Huang ◽  
Honglin Yu

AbstractIn this paper, the optimal safety loading that the reinsurer should set in the reinsurance pricing is studied, which is novel in the literature. It is first assumed that the insurer will choose the form of the reinsurance contract by following the results derived in Cai et al. Different optimality criteria from the reinsurer’s perspective are then studied, such as maximising the expectation of the profit, maximising the utility of the profit and minimising the value-at-risk of the reinsurer’s total loss. By applying the concept of comonotonicity, the problem in which the reinsurer is facing two risks with unknown dependency structure is also solved. Closed-form solutions are obtained when the underlying losses are zero-modified exponentially distributed. Finally, numerical examples are provided to illustrate the results derived.


1986 ◽  
Vol 53 (1) ◽  
pp. 103-107 ◽  
Author(s):  
E. Tsuchida ◽  
T. Mura ◽  
J. Dundurs

The paper analyzes the elastic fields caused by an elliptic inclusion which undergoes a uniform expansion. The interface between the inclusion and the matrix cannot sustain shear tractions and is free to slip. Papkovich–Neuber displacement potentials are used to solve the problem. In contrast to the perfectly bonded interface, the solution cannot be expressed in closed form and involves infinite series. The results are illustrated by numerical examples.


1994 ◽  
Vol 47 (1S) ◽  
pp. S10-S17 ◽  
Author(s):  
Jin H. Huang ◽  
T. Mura

A method drawing from variational method is presented for the purpose of investigating the behavior of inclusions and inhomogeneities embedded in composite materials. The extended Hamilton’s principle is applied to solve many problems pertaining to composite materials such as constitutive equations, fracture mechanics, dislocation theory, overall elastic moduli, work hardening and sliding inclusions. Especially, elastic fields of sliding inclusions and workhardening rate of composite materials are presented in closed forms. For sliding inclusion problems, the sliding is modeled by adding the Somigliana dislocations along a matrix-inclusion interface. Exact formula are exploited for both Burgers vector and the disturbances in stress and strain due to sliding. The resulting expressions are obtained by utilizing the principle of minimum strain energy. Finally, explicit expressions are obtained for work-hardening rate of composite materials. It is verified that the work-hardening rate and yielding stress are independent on the size of inclusions but are dependent on the shape and the volume fraction of inclusions.


2006 ◽  
Vol 129 (1) ◽  
pp. 109-117 ◽  
Author(s):  
Guy Roussel ◽  
Leon Cizelj

The basis for determining the size of the random sample of tubes to be inspected in replacement steam generators is revisited in this paper. A procedure to estimate the maximum number of defective tubes left in the steam generator after no defective tubes have been detected in the randomly selected inspection sample is proposed. A Bayesian estimation is used to obtain closed-form solutions for uniform, triangular, and binomial prior densities describing the number of failed tubes in steam generators. It is shown that the particular way of selecting the random inspection sample (e.g., one sample from both SG, one sample from each SG, etc.) does not affect the results of the inspection and also the information obtained about the state of the uninspected tubing, as long as the inspected steam generators belong to the same population. Numerical examples further demonstrate two possible states of the knowledge existing before the inspection of the tubing. First, virtually no knowledge about the state of the steam generator tubing before the inspection is modeled using uniform and triangular prior densities. It is shown that the knowledge about the uninspected part of the tubing strongly depends on the size of the sample inspected. Further, even small inspection samples may significantly improve our knowledge about the uninspected part. On the other hand, rather strong belief on the state of the tubing prior to the inspection is modeled using binomial prior density. In this case, the knowledge about the uninspected part of the tubing is virtually independent on the size of the sample. Furthermore, it is shown qualitatively and quantitatively that such inspection brings no additional knowledge on the uninspected part of the tubing.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Chein-Shan Liu

We derive an implicit Lie-group algorithm together with the Newton iterative scheme to solve nonlinear differential algebraic equations. Four numerical examples are given to evaluate the efficiency and accuracy of the new method when comparing the computational results with the closed-form solutions.


1993 ◽  
Vol 60 (1) ◽  
pp. 33-40 ◽  
Author(s):  
Hisao Hasegawa ◽  
Ven-Gen Lee ◽  
Toshio Mura

Exact solutions are presented in closed form for the axisymmetric stresses and displacement fields caused by a solid or hollow circular cylindrical inclusion in the present of uniform eigenstrain in a half space. The elastic fields for interior and exterior points are expressed by one analytical form. The strain energy is also obtained in closed forms.


2009 ◽  
Vol 76 (6) ◽  
Author(s):  
Anthony J. Paris

An elasticity approach to the mechanics of load transfer in cord-reinforced composite materials is developed. Finite cords embedded in an elastic matrix and subjected to axial loading is considered, and the extension-twist coupling of the cords is taken into account. Closed form solutions for the axial force and twisting moment in the cord, the shear stresses at the cord-matrix interface in the axial and circumferential directions, the effective axial modulus of the cord, and the apparent modulus of the cord composite are presented. An example of a cord composite typical of what can be found in steel-belted-radial tires is used to illustrate the results. It was found that large shear stresses occur at the cord-matrix interface in both the axial and circumferential directions at the cord ends and that the effective modulus of the cords may be greatly reduced. As a result, the apparent modulus of the composite may be significantly less than that found by a conventional application of the rule-of-mixtures approach.


2000 ◽  
Vol 68 (2) ◽  
pp. 176-185 ◽  
Author(s):  
S. Candan ◽  
I. Elishakoff

An infinite number of closed-form solutions is reported for a deterministically or stochastically nonhomogeneous beam, for both natural frequencies and reliabilities, for specialized cases. These solutions may prove useful as benchmark solutions. Numerical examples are evaluated.


2019 ◽  
Vol 72 (4) ◽  
pp. 449-471 ◽  
Author(s):  
Sofia G Mogilevskaya ◽  
Volodymyr I Kushch ◽  
Anna Y Zemlyanova

Summary The displacements representations of the type used by Christensen and Lo (J. Mech. Phys. Solids27, 1979) are modified to allow for analytical treatment of problems involving spherical and circular material surfaces that possess constant surface tension. The modified representations are used to derive closed-form expressions for the local elastic fields and effective moduli of macroscopically isotropic composite materials containing spherical and circular inhomogeneities with the interfaces described by the complete Gurtin–Murdoch and Steigmann–Ogden models.


2018 ◽  
Vol 52 (4-5) ◽  
pp. 1411-1428
Author(s):  
Badredine Issaadi ◽  
Karim Abbas ◽  
Djamil Aïssani

The calculation of the stationary distribution for a stochastic infinite matrix is generally difficult and does not have closed form solutions, it is desirable to have simple approximations converging rapidly to this distribution. In this paper, we use the weak perturbation theory to establish analytic error bounds for the M/G/1 model. Numerical examples are carried out to illustrate the quality of the obtained error bounds.


Sign in / Sign up

Export Citation Format

Share Document