An Expedient Experimental Technique for the Determination of Thermal Cycling Fatigue Life for BGA Package Solder Balls

2007 ◽  
Vol 129 (4) ◽  
pp. 427-433 ◽  
Author(s):  
Krishna Tunga ◽  
Suresh K. Sitaraman

Although accelerated thermal cycling has been widely used in electronics industry to qualify electronic packages, efforts to reduce the time and cost associated with such qualification techniques are continuously being sought. This paper outlines a laser-moiré based experimental technique to quickly assess the thermal cycling reliability of microelectronic packages. Unlike accelerated thermal cycling that takes several months to complete, the proposed technique takes one to two weeks to complete and does not suffer from various modeling assumptions used in finite-element simulations. The developed technique has been used to determine the thermomechanical reliability of organic and ceramic ball grid array packages, and it is shown that the number of cycles determined by the proposed technique is comparable to the number of cycles determined through accelerated thermal cycling.

2004 ◽  
Vol 126 (2) ◽  
pp. 256-264 ◽  
Author(s):  
Raghuram V. Pucha ◽  
Krishna Tunga ◽  
James Pyland ◽  
Suresh K. Sitaraman

A field-use induced damage mapping methodology is presented that can take into consideration the field-use thermal environment profile to develop accelerated thermal cycling guidelines for packages intended to be used in military avionics thermal environment. The board-level assembly process mechanics and critical geometric features with appropriate material models are taken into consideration while developing the methodology. The models developed are validated against in-house and published accelerated thermal cycling experimental data. The developed mapping methodology is employed to design alternate accelerated thermal cycles by matching the creep and plastic strain contributions to total inelastic strain accumulation in solder under military field-use and accelerated thermal cycling environments, while reducing the time for accelerated thermal cycling and qualification.


Author(s):  
Roy W. Knight ◽  
Yasser Elkady ◽  
Jeffrey C. Suhling ◽  
Pradeep Lall

The thermal performance of Ball Grid Array packages depends upon many parameters including die size, use of thermal balls, number of perimeter balls, use of underfill, and printed circuit board heat spreader and thermal via design. Thermal cycling can affect the integrity of thermal paths in and around the BGA as a result of the cracking of solder balls and delamination of the package, including at underfill interfaces. In this study, the impact of thermal cycling on the thermal performance of BGA’s was investigated and quantified. A number of test boards which included a range of the parameters cited above were experimentally examined. A baseline thermal resistance was measured for each case, which was verified with numerical thermal modeling. The boards were then subjected to thermal cycling from −40°C to 125°C. Every 250 cycles the thermal performance was measured. Packages expected to be least reliable (with large die and no underfill), showed an increase in thermal resistance after 750 thermal cycles. Further increases in thermal resistance were observed with continuous thermal cycling until solder joint failure occurred at 1250 cycles, preventing additional measurements. Finite element analysis identified critical thermal and perimeter solder balls as the most likely sites for cracking. Boards were cross-sectioned and examined for solder joint cracks and delamination to identify the cause for the observed increases in thermal resistance. Cracking was found in the critical thermal and perimeter solder balls.


1994 ◽  
Vol 116 (2) ◽  
pp. 76-82 ◽  
Author(s):  
Tsung-Yu Pan ◽  
Ronald R. Cooper ◽  
Howard D. Blair ◽  
Thomas J. Whalen ◽  
John M. Nicholson

Long-term reliability of electronic packaging has become a greater challenge as a result of ever increasing power requirements and the decreasing size of electronic packages. In this study, the effects of three variables on plated-through hole (PTH) design have been investigated on the thermal cycling fatigue lives in four-layered printed wiring boards (PWB’s). These three variables were evaluated at two levels each: (a) hole size (0.030 and 0.040 in.), (b) internal pad (presence or absence), and (c) epoxy-plugged holes (plugged or unplugged). The electrical resistance was measured on 40 test boards with 23 design of 8 daisy-chain PTH nets each. Full factorial analysis and analysis of variance indicate that all three factors had significant influence on PTH fatigue life, but no two-factor or three-factor interactions were found. Metallurgical analysis reveals that the failure mechanism is barrel cracking near the internal pad. This mechanism has been illustrated by a finite element analysis in this study and correlated by a SEM stereoimaging analysis in the literature. The increase of electrical resistance with thermal cycles correlates well with an analytical barrel crack model. The crack length in each net at specific cycles is calculated, but fails to match predictions from a fracture mechanics model.


Author(s):  
Krishna Tunga ◽  
Suresh K. Sitaraman

Accelerated Thermal Cycling (ATC) is traditionally used for assessing solder joint reliability. ATC typically takes as long as three to four months to complete. This paper proposes a new method to determine the fatigue life of solder joints using laser moire´ technique. The developed method takes about a week to complete and gives us the detailed deformation behavior of each solder ball in the package at various temperatures. The developed method has been demonstrated for a high I/O organic BGA package. To illustrate the efficacy of the method, the results have been validated using experimental thermal cycling data.


2008 ◽  
Vol 130 (4) ◽  
Author(s):  
S. B. Park ◽  
Rahul Joshi ◽  
Izhar Ahmed ◽  
Soonwan Chung

Experimental and numerical techniques are employed to assess the thermomechanical behavior of ceramic and organic flip chip packages under power cycling (PC) and accelerated thermal cycling (ATC). In PC, nonuniform temperature distribution and different coefficients of thermal expansion of each component make the package deform differently compared to the case of ATC. Traditionally, reliability assessment is conducted by ATC because ATC is believed to have a more severe thermal loading condition compared to PC, which is similar to the actual field condition. In this work, the comparative study of PC and ATC was conducted for the reliability of board level interconnects. The comparison was made using both ceramic and organic flip chip ball grid array packages. Moiré interferometry was adopted for the experimental stress analysis. In PC simulation, computational fluid dynamics analysis and finite element analysis are performed. The assembly deformations in numerical simulation are compared with those obtained by Moiré images. It is confirmed that for a certain organic package PC can be a more severe condition that causes solder interconnects to fail earlier than in ATC while the ceramic package fails earlier in ATC always.


2008 ◽  
Vol 130 (1) ◽  
Author(s):  
Leila Jannesari Ladani ◽  
Abhijit Dasgupta

This study examines damage initiation and propagation in solder joints with voids, under thermomechanical cyclic loading. An accelerated thermal cycling test is conducted on printed wiring assemblies (PWAs) containing 256 input/output (I/O) plastic ball grid arrays (PBGAs) with voided solder joints. Destructive and nondestructive failure analyses of the solder balls are used to detect the presence of voids and to relate the extent of damage propagation to the number of thermal cycles. Particular cases of voided and damaged joints are selected from these tests, to guide the development of a strategy for modeling damage propagation, using a three dimensional global-local finite element analysis (FEA). The displacement results of the global FEA at the top and bottom of the selected solder balls are used as the boundary conditions in a local FEA model, which focuses on the details of damage initiation and propagation in the individual solder ball. The local model is error seeded with voids based on cases selected in experiment. The damage propagation rate is monitored for all the cases. The technique used to quantify cyclic creep-fatigue damage is a continuum model based on energy partitioning. A method of successive initiation is used to model the growth and propagation of damage in the selected case studies. The modeling approach is qualitatively verified using the results of the accelerated thermal cycling test. The verified modeling technique described above is then used for parametric study of the durability of voided solder balls in a ChipArray Thin Core BGA with 132 I/O (CTBGA132) assemblies, under thermal cycling. The critical solder ball in the package is selected and is error seeded with voids with different sizes and various distances from damage initiation site. The results show that voids in general are not detrimental to thermal cycling durability of the CTBGA132 assembly, except when a large portion of the damage propagation path is covered with voids. Small voids can arrest the damage propagation, but generally do not provide a significant increase in durability because the damage zone deflects around the void and also continues to propagate from other critical regions in the solder ball.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 543 ◽  
Author(s):  
Tzu-Yu Peng ◽  
Saiji Shimoe ◽  
Lih-Jyh Fuh ◽  
Chung-Kwei Lin ◽  
Dan-Jae Lin ◽  
...  

Poly(aryl–ether–ketone) materials (PAEKs) are gaining interest in everyday dental practices because of their natural properties. This study aims to analyze the bonding performance of PAEKs to a denture acrylic. Testing materials were pretreated by grinding, sandblasting, and priming prior to polymerization with the denture acrylic. The surface morphologies were observed using a scanning electron microscope and the surface roughness was measured using atomic force microscopy. The shear bond strength (SBS) values were determined after 0 and 2500 thermal cycles. The obtained data were analyzed using a paired samples t-test and Tukey’s honestly significant difference (HSD) test (α = 0.05). The surface characteristics of testing materials after different surface pretreatments showed obvious differences. PAEKs showed lower surface roughness values (0.02–0.03 MPa) than Co-Cr (0.16 MPa) and zirconia (0.22 MPa) after priming and sandblasting treatments (p < 0.05). The SBS values of PAEKs (7.60–8.38 MPa) met the clinical requirements suggested by ISO 10477 (5 MPa). Moreover, PAEKs showed significantly lower SBS reductions (p < 0.05) after thermal cycling fatigue testing compared to Co-Cr and zirconia. Bonding performance is essential for denture materials, and our results demonstrated that PAEKs possess good resistance to thermal cycling fatigue, which is an advantage in clinical applications. The results imply that PAEKs are potential alternative materials for the removable of prosthetic frameworks.


Author(s):  
X. Long ◽  
I. Dutta ◽  
R. Guduru ◽  
R. Prasanna ◽  
M. Pacheco

A thermo-mechanical loading system, which can superimpose a temperature and location dependent strain on solder joints, is proposed in order to conduct highly accelerated thermal-mechanical cycling (HATC) tests to assess thermal fatigue reliability of Ball Grid Array (BGA) solder joints in microelectronics packages. The application of this temperature and position dependent strain produces generally similar loading modes (shear and tension) encountered by BGA solder joints during service, but substantially enhances the inelastic strain accumulated during thermal cycling over the same temperature range as conventional ATC (accelerated thermal cycling) tests, thereby leading to a substantial acceleration of low-cycle fatigue damage. Finite element analysis was conducted to aid the design of experimental apparatus and to predict the fatigue life of solder joints in HATC testing. Detailed analysis of the loading locations required to produce failure at the appropriate joint (next to the die-edge ball) under the appropriate tension/shear stress partition are presented. The simulations showed that the proposed HATC test constitutes a valid methodology for further accelerating conventional ATC tests. An experimental apparatus, capable of applying the requisite loads to a BGA package was constructed, and experiments were conducted under both HATC and ATC conditions. It is shown that HATC proffers much reduced cycling times compared to ATC.


Sign in / Sign up

Export Citation Format

Share Document