Direct Upper Bound Solution to Rectangular-to-Polygonal Extrusion Through Square Die

1999 ◽  
Vol 121 (2) ◽  
pp. 195-201 ◽  
Author(s):  
S. K. Sahoo ◽  
P. K. Kar ◽  
K. C. Singh

This paper is concerned with an attempt to find an upper bound solution for the problems of steady-state extrusion of asymmetric polygonal section bars through rough square dies. A class of kinematically admissible velocity fields is examined, reformulating the SERR technique, to get the velocity field that gives the lowest upper bound. This velocity field is utilized to compute the non-dimensional average extrusion pressure at various area reductions for different billet aspect ratios.

2007 ◽  
Vol 345-346 ◽  
pp. 37-40 ◽  
Author(s):  
Gow Yi Tzou ◽  
Sergei Alexandrov

The choice of a kinematically admissible velocity field has a great effect on the predictive capacity of upper bound solutions. It is always advantageous, in addition to the formal requirements of the upper bound theorem, to select a class of velocity fields satisfying some additional conditions that follow from the exact formulation of the problem. In the case of maximum friction law, such an additional condition is that the real velocity field is singular in the vicinity of the friction surface. In the present paper this additional condition is incorporated in the class of kinematically admissible velocity fields chosen for a theoretical analysis of two - layer cylinders subject to compression and twist. An effect of the angular velocity of the die on process parameters is emphasized and discussed.


2006 ◽  
Vol 505-507 ◽  
pp. 1303-1308 ◽  
Author(s):  
Gow Yi Tzou ◽  
Sergei Alexandrov

An upper bound solution for axisymmetric upsetting of two-layer cylinder made of rigid perfectly plastic materials is provided. An important feature of the solution is that the kinematically admissible velocity field, in addition to the necessary requirements of the upper bound theorem, satisfies the frictional boundary condition in stresses, the maximum friction law. The latter is archived by introducing a singular velocity field such that the equivalent strain rate approaches infinity at the friction surface. The dependence of the upper bound limit load on geometric parameters and the ratio of the yield stresses of the two materials is analyzed. The solution can be used in industrial applications for evaluating the load required to deform two-layer cylinders.


Author(s):  
H. Haghighat ◽  
P. Amjadian

In this paper, plane strain extrusion through arbitrarily curved dies is investigated analytically, numerically, and experimentally. Two kinematically admissible velocity fields based on assuming proportional angles, angular velocity field, and proportional distances from the midline in the deformation zone, sine velocity field, are developed for use in upper bound models. The relative average extrusion pressures for the two velocity fields are compared to each other and also with the velocity field of a reference for extrusion through a curved die. The results demonstrate that the angular velocity field is the best. Then, by using the developed analytical model, optimum die lengths which minimize the extrusion loads are determined for a streamlined die and also for a wedge shaped die. The corresponding results for those two die shapes are also determined by using the finite element code and by doing some experiments and are compared with upper bound results. These comparisons show a good agreement.


1975 ◽  
Vol 97 (1) ◽  
pp. 119-124 ◽  
Author(s):  
V. Nagpal ◽  
W. R. Clough

A general kinematically admissible velocity field applicable to forging of a rectangular strip of a incompressible material is presented. Generalized shape of any dead zone, if assumed, can be obtained in terms of process parameters from this velocity field. Two different upper bound solutions for average forging pressure are obtained from simple velocity fields which are special cases of proposed general velocity field. Numerical results of the solutions show improvement over previous upper bound solutions published in literature over a certain range of process parameters.


1991 ◽  
Vol 58 (3) ◽  
pp. 820-824 ◽  
Author(s):  
A. Bogobowicz ◽  
L. Rothenburg ◽  
M. B. Dusseault

A semi-analytical solution for plane velocity fields describing steady-state incompressible flow of nonlinearly viscous fluid into an elliptical opening is presented. The flow is driven by hydrostatic pressure applied at infinity. The solution is obtained by minimizing the rate of energy dissipation on a sufficiently flexible incompressible velocity field in elliptical coordinates. The medium is described by a power creep law and solutions are obtained for a range of exponents and ellipse eccentricites. The obtained solutions compare favorably with results of finite element analysis.


1970 ◽  
Vol 92 (1) ◽  
pp. 158-164 ◽  
Author(s):  
P. C. T. Chen

A method for selecting admissible velocity fields is presented for incompressible material. As illustrations, extrusion processes through three basic types of curved dies have been treated: cosine, elliptic, and hyperbolic. Upper-bound theorem is used in obtaining mean extrusion pressures and also in choosing the most suitable deformation pattern for extrusion through square dies. Effects of die geometry, friction, and material properties are discussed.


Sign in / Sign up

Export Citation Format

Share Document