Strain-Rate-Dependent Constitutive Equations for Concrete

1998 ◽  
Vol 120 (4) ◽  
pp. 398-405 ◽  
Author(s):  
J. W. Tedesco ◽  
C. A. Ross

This paper summarizes the results of a comprehensive experimental study to quantify the effects of strain rate on concrete compressive and tensile strengths. Direct compression and splitting tensile tests were conducted at quasi-static rates (between 10−7/s and 10−5/s) in a standard MTS machine to establish the “static” properties. These same tests were conducted at high strain rates (between 10−1/s and 103/s) on a split-Hopkinson pressure bar (SHPB) to determine the dynamic material properties. A statistical analysis was performed on the data and strain-rate-dependent constitutive equations, both for compression and tension, were developed. These constitutive equations were subsequently employed to modify an existing quasi-static, nonlinear concrete material model.

2018 ◽  
Vol 2018 ◽  
pp. 1-12
Author(s):  
Nan Wu ◽  
Zhende Zhu ◽  
Yaojun Zhou ◽  
Shihu Gao

The dynamic properties of rock in splitting (tensile) and compressive tests are the focus of rock dynamic mechanics research. In this study, a split Hopkinson pressure bar (SHPB) apparatus was used to assess the comparability and strain rate effect of rock samples under two kinds of load conditions. With an increase in impact velocity under compression and splitting (tensile) tests, the strain rate of the samples increased continuously. The rock properties and strain rate in the two kinds of samples exhibited clear similarities: the dimensionless stress-strain curves of the rock samples were similar under the same strain rates. The peak strength and elastic modulus of the two kinds of samples increased with an increase in the strain rate. The number of cracks increased from intergranular to transgranular failure. The rack initiation value of the two kinds of samples was close at the same strain rate and declined with an increase in the strain rate as evidenced by a power function.


2000 ◽  
Author(s):  
Jialin Tsai ◽  
C. T. Sun

Abstract Dynamic compressive strength of off-axis S2/8552 glass-epoxy composite in the form of fiber microbuckling was studied. Based on the bifurcation buckling analysis, the microbuckling stress is approximately equal to the composite tangent shear modulus. Using a viscoplastic constitutive model to describe the composite tangent shear modulus, microbuckling stresses at various strain rates were predicted. Small angle off-axis composite specimens were tested to failure at various strain rates. For strain rates below 1/sec, the compression tests were conducted on an MTS machine, while higher strain rate tests were carried out using a Split Hopkinson Pressure Bar (SHPB). Fiber microbuckling was found to be the dominant failure mode for 5°, 10° and 15° specimens within the range of tested strain rates. Comparison of model prediction with experimental data shows that the rate-dependent microbuckling model can be used for predicting compressive strengths at strain rates up to 1100/s.


2018 ◽  
Vol 183 ◽  
pp. 03006
Author(s):  
Yerim Lee ◽  
Keunho Lee ◽  
Sanghyun Woo ◽  
Changsoo Lee ◽  
Leeju Park

The equal channel angular processing (ECAP) is a severe plastic deformation technique which can produce ultrafine-grained (UFG) alloy. This paper investigate the static and dynamic behaviour of ECAPed OFHC-Cu to evaluate possibility of its application to defence industries. Tensile tests were carried out at two different strain rate (10-3/s, 1/s) using digital image correlation (DIC) technique. High strain rate experiments were conducted using the split Hopkinson pressure bar (SHPB). The results were compared with forged OFHC-Cu and additional heat treated OFHC-Cu after processed by ECAP. Flow stress and strain sensitivity of ECAPed OFHC-Copper were increased compare to forged OFHC-Copper. After ECAPed copper heat treatment, the yield strength decreased with increasing of the average grain size. And numerical simulation of ECAPed copper shaped charge was performed using Autodyn hydrodynamic code.


2006 ◽  
Vol 326-328 ◽  
pp. 1543-1546 ◽  
Author(s):  
Li Jun Zhang ◽  
Xiao Peng Yan ◽  
Zhi Hua Wang ◽  
Hong Wei Ma

Many structures and buildings such as nuclear power station and chemical plant are often subjected to impact and explosive loadings. The understanding of material response to highamplitude, short-duration, impulse loads is very important, dynamic behavior of concrete under high strain rate has been paid much attention to. In the present paper, experimental study on the dynamic tension behavior of concrete is carried out. Based on the former theoretical introduction, dynamic splitting tensile tests at different strain rates are conducted on 74mm diameter concrete specimens in a Split Hopkinson Pressure Bar to study the effect of strain rate on the dynamic tension behavior of concrete. The mechanism and speed of crack propagation of concrete cylinder planar surface in dynamic splitting tensile test are discussed briefly.


2015 ◽  
Vol 816 ◽  
pp. 795-803
Author(s):  
Yan Ling Wang ◽  
Song Xiao Hui ◽  
Wen Jun Ye ◽  
Rui Liu

The mechanical properties and fracture failure behavior of the near β-type Ti-5Al-5Mo-5V-3Cr-X (X = 1Fe or 1Zr) titanium alloys were studied by Split Hopkinson Pressure Bar (SHPB) experiment under the dynamic loading conditions at a strain rate of 1.5 × 103 s-1–5.0 × 103 s-1. Results showed that the SHPB specimen fractured in the direction of maximum shearing stress at an angle of 45° with the compression axis. The fracture surface revealed the shear and tension zones with cleavage steps and parabolic dimples. Severe early unloading was observed on the Ti-5553 alloy under a strain rate of 4,900 s-1 loading condition, and the dynamic property of the Ti-55531Zr alloy was proved to be the optimal.


2021 ◽  
Vol 1035 ◽  
pp. 591-595
Author(s):  
Dan Guo ◽  
Jian Ming Liu ◽  
De Ming Zhang ◽  
Xin Zhang ◽  
Tong Liu

The purpose of this investigation is to study the dynamic hardness of MCrAlY abradable coatings under different strain rates. A dynamic indentation device based on the split Hopkinson pressure bar system (SHPB) was used. The results show that the hardness of MCrAlY coating increased with the increase of the strain rate, which has a positive strain rate effect. In addition, the difference of the static hardness of MCrAlY coating prepared by HVOF and LPPS was only 4%, while the difference in dynamic hardness was 16%.


2018 ◽  
Vol 183 ◽  
pp. 04005 ◽  
Author(s):  
Bar Nurel ◽  
Moshe Nahmany ◽  
Adin Stern ◽  
Nahum Frage ◽  
Oren Sadot

Additive manufacturing by Selective Laser Melting of metals is attracting substantial attention, due to its advantages, such as short-time production of customized structures. This technique is useful for building complex components using a metallic pre-alloyed powder. One of the most used materials in AMSLM is AlSi10Mg powder. Additively manufactured AlSi10Mg may be used as a structural material and it static mechanical properties were widely investigated. Properties in the strain rates of 5×102–1.6×103 s-1 and at higher strain rates of 5×103 –105 s-1 have been also reported. The aim of this study is investigation of dynamic properties in the 7×102–8×103 s-1 strain rate range, using the split Hopkinson pressure bar technique. It was found that the dynamic properties at strain-rates of 1×103–3×103 s-1 depend on a build direction and affected by heat treatment. At higher and lower strain-rates the effect of build direction is limited. The anisotropic nature of the material was determined by the ellipticity of samples after the SHPB test. No strain rate sensitivity was observed.


Sign in / Sign up

Export Citation Format

Share Document