Numerical Simulations of Three-Dimensional Flows in a Cubic Cavity With an Oscillating Lid

1993 ◽  
Vol 115 (4) ◽  
pp. 680-686 ◽  
Author(s):  
Reima Iwatsu ◽  
Jae Min Hyun ◽  
Kunio Kuwahara

Numerical studies are made of three-dimensional flow of a viscous fluid in a cubical container. The flow is driven by the top sliding wall, which executes sinusoidal oscillations. Numerical solutions are acquired by solving the time-dependent, three-dimensional incompressible Navier-Stokes equations by employing very fine meshes. Results are presented for wide ranges of two principal physical parameters, i.e., the Reynolds number, Re ≤ 2000 and the frequency parameter of the lid oscillation, ω′ ≤ 10.0. Comprehensive details of the flow structure are analyzed. Attention is focused on the three-dimensionality of the flow field. Extensive numerical flow visualizations have been performed. These yield sequential plots of the main flows as well as the secondary flow patterns. It is found that the previous two-dimensional computational results are adequate in describing the main flow characteristics in the bulk of interior when ω′ is reasonably high. For the cases of high-Re flows, however, the three-dimensional motions exhibit additional complexities especially when ω′ is low. It is asserted that, thanks to the recent development of the supercomputers, calculation of three-dimensional, time-dependent flow problems appears to be feasible at least over limited ranges of Re.

Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 756
Author(s):  
Federico Lluesma-Rodríguez ◽  
Francisco Álcantara-Ávila ◽  
María Jezabel Pérez-Quiles ◽  
Sergio Hoyas

One numerical method was designed to solve the time-dependent, three-dimensional, incompressible Navier–Stokes equations in turbulent thermal channel flows. Its originality lies in the use of several well-known methods to discretize the problem and its parallel nature. Vorticy-Laplacian of velocity formulation has been used, so pressure has been removed from the system. Heat is modeled as a passive scalar. Any other quantity modeled as passive scalar can be very easily studied, including several of them at the same time. These methods have been successfully used for extensive direct numerical simulations of passive thermal flow for several boundary conditions.


1968 ◽  
Vol 90 (2) ◽  
pp. 248-254 ◽  
Author(s):  
D. F. Young

A common occurrence in the arterial system is the narrowing of arteries due to the development of atherosclerotic plaques or other types of abnormal tissue development. As these growths project into the lumen of the artery, the flow is disturbed and there develops a potential coupling between the growth and the blood flow through the artery. A discussion of the various possible consequences of this interaction is given. It is noted that very small growths leading to mild stenotic obstructions, although not altering the gross flow characteristics significantly, may be important in triggering biological mechanisms such as intimal cell proliferation or changes in vessel caliber. An analysis of the effect of an axially symmetric, time-dependent growth into the lumen of a tube of constant cross section through which a Newtonian fluid is steadily flowing is presented. This analysis is based on a simplified model in which the convective acceleration terms in the Navier-Stokes equations are neglected. Effect of growth on pressure distribution and wall shearing stress is given and possible biological implications are discussed.


2020 ◽  
Vol 8 (6) ◽  
pp. 3977-3980

A numerical analysis is carried out to understand the flow characteristics for different impeller configurations of a single stage centrifugal blower. The volute design is based on constant velocity method. Four different impeller configurations are selected for the analysis. Impeller blade geometry is created with point by point method. Numerical simulation is carried out by CFD software GAMBIT 2.4.6 and FLUENT 6.3.26. GAMBIT work includes geometry definition and grid generation of computational domain. This process includes selection of grid types, grid refinements and defining correct boundary conditions. Processing work is carried out in FLUENT. The viscous Navier-Stokes equations are solved with control volume approach and the k-ε turbulence model. In this three dimensional numerical analysis is carried out with steady flow approach. The rotor and stator interaction is solved by mixing plane approach. Results of simulation are presented in terms of flow parameters, at impeller outlet and various angular positions inside the volute. Also, the contours of flow properties are presented at the outlet plane of fluid domain. Results suggest that for the same configurations of centrifugal blower, as we change geometrical parameter of impeller the flow inside the blower get affected.


Author(s):  
Mustafa Koz ◽  
Serhat Yesilyurt

Microorganisms such as bacteria use their rotating helical flagella for propulsion speeds up to tens of tail lengths per second. The mechanism can be utilized for controlled pumping of liquids in microchannels. In this study, we aim to analyze the effects of control parameters such as axial span between helical rounds (wavelength), angular velocity of rotations (frequency), and the radius of the helix (amplitude) on the maximum time-averaged flow rate, maximum head, rate of energy transfer, and efficiency of the micropump. The analysis is based on simulations obtained from the three-dimensional time-dependent numerical model of the flow induced by the rotating spiral inside a rectangular-prism channel. The flow is governed by Navier-Stokes equations subject to continuity in time-varying domain due to moving boundaries of the spiral. Numerical solutions are obtained using a commercial finite-element package which uses arbitrary Lagrangian-Eulerian method for mesh deformations. Results are compared with asymptotic results obtained from the resistive-force-theory available in the literature.


Author(s):  
J.-H. Jeon ◽  
S.-S. Byeon ◽  
Y.-J. Kim

The Francis turbine is a kind of reaction turbines, which means that the potential energy of water converted to rotational kinetic energy. In this study, the flow characteristics have been investigated numerically in a Francis turbine on the 15 MW hydropower generation with various blade profiles (NACA 65 and NACA 16 series) and discharge angles (14°, 15°, 17°, and 18°), using the commercial code, ANSYS CFX. The k-ω SST turbulence model is employed in the Reynolds averaged Navier-Stokes equations. The computing domain includes the spiral casing, guide vanes, and draft tube, which are discretized with a full three-dimensional mesh system of unstructured tetrahedral shapes. The results showed that the change of blade profiles and discharge angles significantly influenced the performance of the Francis turbine.


1992 ◽  
Vol 236 ◽  
pp. 461-476 ◽  
Author(s):  
Hans J. Lugt ◽  
Samuel Ohring

The problem of a vortex pair, rising obliquely at an angle of 45° toward a deformable free surface in a viscous, incompressible fluid, is solved with the aid of the Navier—Stokes equations. The full nonlinear boundary conditions at the free surface are applied. The oblique interaction of the vortex pair with the free surface results in a number of novel features that have not been observed for the special case of a vertical rise, reported earlier. These features include the directional change of trajectories near the free surface and the occurrence of waves driven by the vortex pair. Moreover, surface tension can completely change the flow characteristics such as the direction of the trajectories and the generation of secondary vortices. Numerical solutions are presented for selected Reynolds, Froude, and Weber numbers.


Author(s):  
Kai-Shing Yang ◽  
Ing-Young Chen ◽  
Chi-Chuan Wang

A numerical study is conducted to examine the flow characteristics of the inkjet print-head with special attentions on the refilling process. By solving the full set of three-dimensional transient Navier-Stokes equations and considering the process of bubble growth and collapse as a movable membrane, it is found that the double refilling channels can reduce the flow surge phenomenon considerably due to the imposed friction. However, for the additional cylinder obstacle placed at the filling channel, the flow surge phenomenon is still present. This is because of the jet-like flow along the cylinder leading to a collision and eruption of fluid angled towards the plane boundary with the presence of cylinder. The calculated results also indicated the flow surge can be moderately suppressed for fluid having larger dynamic viscosity.


1985 ◽  
Vol 150 ◽  
pp. 121-138 ◽  
Author(s):  
Harold R. Vaughn ◽  
William L. Oberkampf ◽  
Walter P. Wolfe

The incompressible three-dimensional Navier–Stokes equations are solved numerically for a fluid-filled cylindrical cannister that is spinning and nutating. The motion of the cannister is characteristic of that experienced by spin-stabilized artillery projectiles. Equations for the internal fluid motion are derived in a non-inertial aeroballistic coordinate system. Steady-state numerical solutions are obtained by an iterative finite-difference procedure. Flow fields and liquid induced moments have been calculated for viscosities in the range of 0.9 × 104−1 × 109 cSt. The nature of the three-dimensional fluid motion inside the cylinder is discussed, and the moments generated by the fluid are explained. The calculated moments generally agree with experimental measurements.


Sign in / Sign up

Export Citation Format

Share Document