The Dynamics of a Deformable Body Experiencing Large Displacements

1988 ◽  
Vol 55 (3) ◽  
pp. 676-680 ◽  
Author(s):  
W. P. Koppens ◽  
A. A. H. J. Sauren ◽  
F. E. Veldpaus ◽  
D. H. van Campen

A general description of the dynamics of a deformable body experiencing large displacements is presented. These displacements are resolved into displacements due to deformation and displacements due to rigid body motion. The former are approximated with a linear combination of assumed displacement fields. D’Alembert’s principle is used to derive the equations of motion. For this purpose, the rigid body displacements and the displacements due to deformation have to be independent. Commonly employed conditions for achieving this are reviewed. It is shown that some conditions lead to considerably simpler equations of motion and a sparser mass matrix, resulting in CPU time savings when used in a multibody program. This is illustrated with a uniform beam and a crank-slider mechanism.

1998 ◽  
Vol 120 (3) ◽  
pp. 650-657 ◽  
Author(s):  
A. P. Christensen ◽  
A. A. Shabana

In the classical finite element literature beams and plates are not considered as isoparametric elements since infinitesimal rotations are used as nodal coordinates. As a consequence, exact modeling of an arbitrary rigid body displacement cannot be obtained, and rigid body motion does not lead to zero strain. In order to circumvent this problem in flexible multibody simulations, an intermediate element coordinate system, which has an origin rigidly attached to the origin of the deformable body coordinate system and has axes which are parallel to the axes of the element coordinate system in the undeformed configuration was introduced. Using this intermediate element coordinate system and the fact that conventional beam and plate shape functions can describe an arbitrary rigid body translation, an exact modeling of the rigid body inertia can be obtained. The large rigid body translation and rotational displacements can be described using a set of reference coordinates that define the location of the origin and the orientation of the deformable body coordinate system. On the other hand, as demonstrated in this investigation, the incremental finite element formulations do not lead to exact modeling of the spatial rigid body mass moments and products of inertia when the structures move as rigid bodies, and such formulations do not lead to the correct rigid body equations of motion. The correct equations of motion, however, can be obtained if the coordinates are defined in terms of global slopes. Using this new definition of the element coordinates, an absolute nodal coordinate formulation that leads to a constant mass matrix for the element can be developed. Using this formulation, in which no infinitesimal or finite rotations are used as nodal coordinates, beam and plate elements can be treated as isoparametric elements.


Author(s):  
X. Tong ◽  
B. Tabarrok

Abstract In this paper the global motion of a rigid body subject to small periodic torques, which has a fixed direction in the body-fixed coordinate frame, is investigated by means of Melnikov’s method. Deprit’s variables are introduced to transform the equations of motion into a form describing a slowly varying oscillator. Then the Melnikov method developed for the slowly varying oscillator is used to predict the transversal intersections of stable and unstable manifolds for the perturbed rigid body motion. It is shown that there exist transversal intersections of heteroclinic orbits for certain ranges of parameter values.


1983 ◽  
Vol 105 (2) ◽  
pp. 171-178 ◽  
Author(s):  
V. N. Shah ◽  
C. B. Gilmore

A modal superposition method for the dynamic analysis of a structure with Coulomb friction is presented. The finite element method is used to derive the equations of motion, and the nonlinearities due to friction are represented by pseudo-force vector. A structure standing freely on the ground may slide during a seismic event. The relative displacement response may be divided into two parts: elastic deformation and rigid body motion. The presence of rigid body motion necessitates the inclusion of the higher modes in the transient analysis. Three single degree-of-freedom problems are solved to verify this method. In a fourth problem, the dynamic response of a platform standing freely on the ground is analyzed during a seismic event.


Author(s):  
S J Jang ◽  
Y J Choi

Introducing the planes of symmetry into an oscillating rigid body suspended by springs simplifies the complexity of the equations of motion and decouples the modes of vibration into in-plane and out-of-plane modes. There have been some research results from the investigation into the conditions for planes of symmetry in which prior conditions for the simplification of the equations of motion are required. In this article, the conditions for the planes of symmetry that do not need prior conditions for simplification are presented. The conditions are derived from direct expansions of eigenvalue problems for stiffness and mass matrices that are expressed in terms of in-plane and out-of-plane modes and the orthogonality condition with respect to the mass matrix. Two special points, the planar couple point and the perpendicular translation point are identified, where the expressions for stiffness and compliance matrices can be greatly simplified. The simplified expressions are utilized to obtain the analytical expressions for the axes of vibration of a vibration system with planes of symmetry.


1993 ◽  
Vol 115 (2) ◽  
pp. 294-299 ◽  
Author(s):  
N. Vukasovic ◽  
J. T. Celigu¨eta ◽  
J. Garci´a de Jalo´n ◽  
E. Bayo

In this paper we present an extension to flexible multibody systems of a system of fully cartesian coordinates previously used in rigid multibody dynamics. This method is fully compatible with the previous one, keeping most of its advantages in kinematics and dynamics. The deformation in each deformable body is expressed as a linear combination of Ritz vectors with respect to a local frame whose motion is defined by a series of points and vectors that move according to the rigid body motion. Joint constraint equations are formulated through the points and vectors that define each link. These are chosen so that a minimum use of local reference frames is done. The resulting equations of motion are integrated using the trapezoidal rule combined with fixed point iteration. An illustrative example that corresponds to a satellite deployment is presented.


Author(s):  
Johannes Gerstmayr ◽  
Astrid Pechstein

A standard technique to reduce the system size of flexible multibody systems is the component mode synthesis. Selected mode shapes are used to approximate the flexible deformation of each single body numerically. Conventionally, the (small) flexible deformation is added relatively to a body-local reference frame, which results in the floating frame of reference formulation (FFRF). The coupling between large rigid body motion and small relative deformation is nonlinear, which leads to computationally expensive non-constant mass matrices and quadratic velocity vectors. In the present work, the total (absolute) displacements are directly approximated by means of mode shapes, without a splitting into rigid body motion and superimposed flexible deformation. As the main advantage of the proposed method, the mass matrix is constant, the quadratic velocity vector vanishes and the stiffness matrix is a co-rotated constant matrix. Numerical experiments show the equivalence of the proposed method to the FFRF approach.


2019 ◽  
Vol 49 (3) ◽  
pp. 291-313 ◽  
Author(s):  
Andreas Zwölfer ◽  
Johannes Gerstmayr

AbstractThe Floating Frame of Reference Formulation (FFRF) is one of the most widely used methods to analyze flexible multibody systems subjected to large rigid-body motion but small strains and deformations. The FFRF is conventionally derived via a continuum mechanics approach. This tedious and circuitous approach, which still attracts attention among researchers, yields so-called inertia shape integrals. These unhandy volume integrals, arising in the FFRF mass matrix and quadratic velocity vector, depend not only on the degrees of freedom, but also on the finite element shape functions. That is why conventional computer implementations of the FFRF are laborious and error prone; they require access to the algorithmic level of the underlying finite element code or are restricted to a lumped mass approximation. This contribution presents a nodal-based treatment of the FFRF to bypass these integrals. Each flexible body is considered in its spatially discretized state ab initio, wherefore the integrals are replaced by multiplications by a constant finite element mass matrix. Besides that, this approach leads to a simpler and concise but rigorous derivation of the equations of motion. The steps to obtain the inertia-integral-free equations of motion (in 2D and 3D spaces) are presented in a clear and comprehensive way; the final result provides ready-to-implement equations of motion without a lumped mass approximation, in contrast to the conventional formulation.


Author(s):  
A. L. Schwab ◽  
J. P. Meijaard

Abstract In the case of small elastic deformations in a flexible multi-body system, the periodic motion of the system can be modelled as a superposition of a small linear vibration and a non-linear rigid body motion. For the small deformations this analysis results in a set of linear differential equations with periodic coefficients. These equations give more insight in the vibration phenomena and are computationally more efficient than a direct non-linear analysis by numeric integration. The realization of the method in a program for flexible multibody systems is discussed which requires, besides the determination of the periodic rigid motion, the determination of the linearized equations of motion. The periodic solutions for the linear equations are determined with a harmonic balance method, while transient solutions are obtained by averaging. The stability of the periodic solution is considered. The method is applied to a pendulum with a circular motion of its support point and a slider-crank mechanism with flexible connecting rod. A comparison is made with previous non-linear results.


1999 ◽  
Vol 52 (9) ◽  
pp. 275-303 ◽  
Author(s):  
Hartmut Bremer

Due to the highly complex structure of the equations of motion, there exists a basic demand for procedures with minimum effort. This is achieved by the projection method applied to systems consisting of rigid and elastic bodies which undergo fast rigid body motions with superimposed small elastic deflections. The outlined method leads to different left and right Jacobians for the partial differential equations along with simple operators for determination of corresponding boundary conditions. When a Ritz series expansion is used for approximate solution, the left and right Jacobians become identical. The procedure is demonstrated for plate vibrations without rigid body motion and then applied to a single moving beam and finally augmented to multi beam systems. Special attention is hereby given to the effects of dynamical coupling which influence bending stiffness and connect bending with torsion. This review article has 55 references.


Author(s):  
Zihan Shen ◽  
Benjamin Chouvion ◽  
Fabrice Thouverez ◽  
Aline Beley ◽  
Jean-Daniel Beley

In order to achieve better performances and reduce fuel consumption, the new generation of turbomachines uses larger and lighter design, for instance the “open-rotor” concept, and is conceived to rotate at higher speeds. Parts of the structure become then even more likely to undergo large amplitude vibrations. Consequently, the conception of future aero-engine requires a sound and robust technique to predict the rotating machine vibrations considering geometrical nonlinearities (large displacements and large deformation). In this paper, the nonlinear vibrations of rotating beams with large displacements is investigated by the use of the Co-Rotational (C-R) finite element method. In the C-R approach, the full motion of each element is decomposed into a rigid body part and a pure deformational part by introducing a local coordinate system attached to the element. The utilization of the C-R method offers the possibility to treat geometrical nonlinearity directly with pre-extracted rigid body motion displacements. The originality we propose in this study is to derive its formulation in a rotating reference frame and include both centrifugal and gyroscopic effects. The nonlinear governing equations are obtained from Lagrange’s equations using a consistent expression for the kinetic energy. With this formulation, the spin-stiffening effect from geometrical nonlinearities due to large displacements is accurately handled. The proposed approach is then applied to several types of mechanical analysis (static large deformation, modal analysis at different spin speeds, and transient analysis after an impulsive force) to verify its accuracy and demonstrate its efficiency.


Sign in / Sign up

Export Citation Format

Share Document