The Use of Vector Techniques in Variational Problems

1986 ◽  
Vol 108 (2) ◽  
pp. 141-145 ◽  
Author(s):  
L. J. Everett ◽  
M. McDermott

A convenient means for applying vector mathematics to variational problems is presented. The total and relative variations of a vector are defined and results which follow from these definitions are developed and proved. These results are then used to express the variation of a functional using vector techniques rather than the classical scalar or matrix techniques. The simple problems of deriving equations of motion for a rigid body and for a rigid double pendulum are presented as examples of the technique. The key advantages of the method are that (1) it allows the investigator who is familiar and proficient with vector techniques to apply these skills to variational problems and (2) it greatly simplifies the application of variational techniques to problems which include both rigid body motions and elastic deformations. This is accomplished by providing the techniques necessary for computing the variation of a vector defined in a moving coordinate system without using coordinate transformations.

2012 ◽  
Vol 12 (06) ◽  
pp. 1250049 ◽  
Author(s):  
A. RASTI ◽  
S. A. FAZELZADEH

In this paper, multibody dynamic modeling and flutter analysis of a flexible slender vehicle are investigated. The method is a comprehensive procedure based on the hybrid equations of motion in terms of quasi-coordinates. The equations consist of ordinary differential equations for the rigid body motions of the vehicle and partial differential equations for the elastic deformations of the flexible components of the vehicle. These equations are naturally nonlinear, but to avoid high nonlinearity of equations the elastic displacements are assumed to be small so that the equations of motion can be linearized. For the aeroelastic analysis a perturbation approach is used, by which the problem is divided into a nonlinear flight dynamics problem for quasi-rigid flight vehicle and a linear extended aeroelasticity problem for the elastic deformations and perturbations in the rigid body motions. In this manner, the trim values that are obtained from the first problem are used as an input to the second problem. The body of the vehicle is modeled with a uniform free–free beam and the aeroelastic forces are derived from the strip theory. The effect of some crucial geometric and physical parameters and the acting forces on the flutter speed and frequency of the vehicle are investigated.


1976 ◽  
Vol 98 (4) ◽  
pp. 1306-1312 ◽  
Author(s):  
B. S. Thompson ◽  
A. D. S. Barr

A variational principle is presented that may be used for setting up the equations describing the elastodynamic motion of planar linkages in which all the members are considered to be flexible. These systems are modeled as a set of continua in which elastic deformations are superimposed on gross rigid-body motions. Displacement continuity at pin joints, or any other special constraints that are peculiar to the linkage being analyzed, are incorporated by the use of Lagrange multipliers. By permitting independent variations of the stress, strain, displacement, and velocity parameters for each link approximate equations of motion, boundary and compatibility conditions for the complete mechanism may be systematically constructed. As an illustrative example, the derivation of the problem definition for a flexible slider-crank mechanism is given.


1989 ◽  
Vol 56 (4) ◽  
pp. 887-892 ◽  
Author(s):  
A. K. Banerjee ◽  
T. R. Kane

Equations of motion are formulated for a thin elastic plate that is executing small motions relative to a reference frame undergoing large rigid body motions (three-dimensional rotation and translation) in a Newtonian reference frame. As an illustrative example, a spin-up maneuver for a simply-supported rectangular plate is examined, and the vibration modes of such a plate are used to show that the present theory captures the phenomenon of dynamic stiffening.


Author(s):  
Andreas Müller

Geometric methods have become increasingly accepted in computational multibody system (MBS) dynamics. This includes the kinematic and dynamic modeling as well as the time integration of the equations of motion. In particular, the observation that rigid body motions form a Lie group motivated the application of Lie group integration schemes, such as the Munthe-Kaas method. Also established vector space integration schemes tailored for structural and MBS dynamics were adopted to the Lie group setting, such as the generalized α integration method. Common to all is the use of coordinate mappings on the Lie group SE(3) of Euclidean motions. In terms of canonical coordinates (screw coordinates), this is the exponential mapping. Rigid body velocities (twists) are determined by its right-trivialized differential, denoted dexp. These concepts have, however, not yet been discussed in compact and concise form, which is the contribution of this paper with particular focus on the computational aspects. Rigid body motions can also be represented by dual quaternions, that form the Lie group Sp̂(1), and the corresponding dynamics formulations have recently found a renewed attention. The relevant coordinate mappings for dual quaternions are presented and related to the SE(3) representation. This relation gives rise to a novel closed form of the dexp mapping on SE(3). In addition to the canonical parameterization via the exponential mapping, the noncanonical parameterization via the Cayley mapping is presented.


1990 ◽  
Vol 35 (2) ◽  
pp. 60-68
Author(s):  
Jon‐Shen Fuh ◽  
Brahmananda Panda ◽  
David A. Peters

A general finite‐element procedure is presented for modeling rotorcraft undergoing elastic deformations in addition to large rigid body motions with respect to inertial space. Special attention is given to the coupling of the rotor and fuselage subsystems subject to large relative rotations. Initially, the rotor and fuselage subsystems are assembled separately as small‐rotation finite‐element models in a moving coordinate system. In order to handle large rigid body rotations, the coordinate systems are tied to the structure using one of several alternate constraint methods. Finally, the equations which allow large rotations are constrained together using a rotating to nonrotating transformation which allows rotor azimuth angle as a degree of freedom. The resulting system of equations, which has not been implemented, is applicable to both helicopter trim and large angle maneuver analyses.


Author(s):  
Fotios Georgiades

Abstract Perpetual points in mechanical systems defined recently. Herein are used to seek specific types of solutions of N-degrees of freedom systems, and their significance in mechanics is discussed. In discrete linear mechanical systems, is proven, that the perpetual points are forming the perpetual manifolds and they are associated with rigid body motions, and these systems are called perpetual. The definition of perpetual manifolds herein is extended to the augmented perpetual manifolds. A theorem, defining the conditions of the external forces applied in an N-degrees of freedom system lead to a solution in the exact augmented perpetual manifold of rigid body motions, is proven. In this case, the motion by only one differential equation is described, therefore forms reduced-order modelling of the original equations of motion. Further on, a corollary is proven, that in the augmented perpetual manifolds for external harmonic force the system moves in dual mode as wave-particle. The developed theory is certified in three examples and the analytical solutions are in excellent agreement with the numerical simulations. The outcome of this research is significant in several sciences, in mathematics, in physics and in mechanical engineering. In mathematics, this theory is significant for deriving particular solutions of nonlinear systems of differential equations. In physics/mechanics, the existence of wave-particle motion of flexible mechanical systems is of substantial value. Finally in mechanical engineering, the theory in all mechanical structures can be applied, e.g. cars, aeroplanes, spaceships, boats etc. targeting only the rigid body motions.


Author(s):  
Y. C. Mbono Samba ◽  
M. Pascal

Abstract The work is concerned with the dynamics of multibody systems with flexible parts undergoing large rigid body motions and small elastic deformations. The standard method used in most cases leads to keep only linear terms with respect to the deformations. However, for large rates or large accelerations, this linearisation is sometimes too premature. In this work, a non dimensional analysis of the system is performed, with some estimate about the order of magnitude of the different parameters occuring in the dynamical model obtained by Kane’s method [1]. A flexible slider crank mechanism is used as a test example, together with AUTOLEV [2] software for numerical results.


2019 ◽  
Vol 14 (9) ◽  
Author(s):  
R. Wiebe ◽  
P. S. Harvey

The Euler–Lagrange equation is frequently used to develop the governing dynamic equilibrium expressions for rigid-body or lumped-mass systems. In many cases, however, the rectangular coordinates are constrained, necessitating either the use of Lagrange multipliers or the introduction of generalized coordinates that are consistent with the kinematic constraints. For such cases, evaluating the derivatives needed to obtain the governing equations can become a very laborious process. Motivated by several relevant problems related to rigid-body structures under seismic motions, this paper focuses on extending the elegant equations of motion developed by Greenwood in the 1970s, for the special case of planar systems of rigid bodies, to include rigid-body rotations and accelerating reference frames. The derived form of the Euler–Lagrange equation is then demonstrated with two examples: the double pendulum and a rocking object on a double rolling isolation system. The work herein uses an approach that is used by many analysts to derive governing equations for planar systems in translating reference frames (in particular, ground motions), but effectively precalculates some of the important stages of the analysis. It is hoped that beyond re-emphasizing the work by Greenwood, the specific form developed herein may help researchers save a significant amount of time, reduce the potential for errors in the formulation of the equations of motion for dynamical systems, and help introduce more researchers to the Euler–Lagrange equation.


Author(s):  
Ilmar F. Santos ◽  
Alexandre P. Ferretti ◽  
Eduardo Schmidek

Abstract This work has significant practical applications in the area of Dynamics of nonlinear systems. Here, one of these applications is presented: a methodology based on Dynamics principles and axioms and animation techniques, which yield the visualization of the dynamic behavior of nonlinear systems. Three theoretical and experimental examples are shown, illustrating mechanical systems modeled as systems of particles, as a rigid body and as multibody systems. Three laboratory prototypes were created: a double pendulum (system of particles), a top (rigid body) and a satellite with internal rotors (multibody system). The purpose of comparing the motions of these prototypes with the ones obtained by numerical simulations is to make learning easier and to show the physical meaning of equations of motion obtained through Dynamics principles and axioms formulated by Newton, Euler, D’Alembert, Jourdain and Lagrange.


Sign in / Sign up

Export Citation Format

Share Document