multibody systems
Recently Published Documents


TOTAL DOCUMENTS

1588
(FIVE YEARS 182)

H-INDEX

55
(FIVE YEARS 5)

Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 257
Author(s):  
Sorin Vlase ◽  
Marin Marin ◽  
Negrean Iuliu

This paper presents the main analytical methods, in the context of current developments in the study of complex multibody systems, to obtain evolution equations for a multibody system with deformable elements. The method used for analysis is the finite element method. To write the equations of motion, the most used methods are presented, namely the Lagrange equations method, the Gibbs–Appell equations, Maggi’s formalism and Hamilton’s equations. While the method of Lagrange’s equations is well documented, other methods have only begun to show their potential in recent times, when complex technical applications have revealed some of their advantages. This paper aims to present, in parallel, all these methods, which are more often used together with some of their engineering applications. The main advantages and disadvantages are comparatively presented. For a mechanical system that has certain peculiarities, it is possible that the alternative methods offered by analytical mechanics such as Lagrange’s equations have some advantages. These advantages can lead to computer time savings for concrete engineering applications. All these methods are alternative ways to obtain the equations of motion and response time of the studied systems. The difference between them consists only in the way of describing the systems and the application of the fundamental theorems of mechanics. However, this difference can be used to save time in modeling and analyzing systems, which is important in designing current engineering complex systems. The specifics of the analyzed mechanical system can guide us to use one of the methods presented in order to benefit from the advantages offered.


Author(s):  
Alfonso García-Agúndez Blanco ◽  
Daniel García Vallejo ◽  
Emilio Freire ◽  
Aki Mikkola

Abstract In this paper, the stability of a waveboard, a human propelled two-wheeled vehicle consisting in two rotatable platforms, joined by a torsion bar and supported on two caster wheels, is analysed. A multibody model with holonomic and nonholonomic constraints is used to describe the system. The nonlinear equations of motion, which constitute a Differential-Algebraic system of equations (DAE system), are linearized along the steady forward motion resorting to a recently validated linearization procedure, which allows the maximum possible reduction of the linearized equations of motion of constrained multibody systems. The approach enables the generation of the Jacobian matrix in terms of the geometric and dynamic parameters of the multibody system, and the eigenvalues of the system are parameterized in terms of the design parameters. The resulting minimum set of linear equations leads to the elimination of spurious null eigenvalues, while retaining all the stability information in spite of the reduction of the Jacobian matrix. The linear stability results of the waveboard obtained in previous work are validated with this approach. The procedure shows an excellent computational efficiency with the waveboard, its utilization being highly advisable to linearize the equations of motion of complex constrained multibody systems.


2022 ◽  
Author(s):  
Paramanand Vivekanand Nandihal ◽  
Ashish Mohan ◽  
Subir Kumar Saha

2021 ◽  
Vol 2 (4) ◽  
pp. 1009-1036
Author(s):  
Olivier Bauchau ◽  
Valentin Sonneville

This paper presents a finite element implementation of plates and shells for the analysis of flexible multibody systems. The developments are set within the framework of the motion formalism that (1) uses configuration and motion to describe the kinematics of flexible multibody systems, (2) couples their displacement and rotation components by recognizing that configuration and motion are members of the Special Euclidean group, and (3) resolves all tensors components in local frames. The formulation based on the motion formalism (1) provides a theoretical framework that streamlines the formulation of shell elements, (2) leads to governing equations of motion that are objective, intrinsic, and present a reduced order of nonlinearity, (3) improves the efficiency of the solution process, (4) circumvents the shear locking phenomenon that plagues shell formulations based on classical kinematic descriptions, and (5) prevents the occurrence of singularities in the treatment of finite rotation. Numerical examples are presented to illustrate the advantageous features of the proposed formulation.


2021 ◽  
Vol 11 (23) ◽  
pp. 11558
Author(s):  
Roberto Belotti ◽  
Ilaria Palomba ◽  
Erich Wehrle ◽  
Renato Vidoni

The use of flexible multibody simulation has increased significantly over recent years due to the increasingly lightweight nature of mechanical systems. The prominence of lightweight engineering design in mechanical systems is driven by the desire to require less energy in operation and to reach higher speeds. However, flexible lightweight systems are prone to vibration, which can affect reliability and overall system performance. Whether such issues are critical depends largely on the system eigenfrequencies, which should be correctly assigned by the proper choice of the inertial and elastic properties of the system. In this paper, an eigenfrequency assignment method for flexible multibody systems is proposed. This relies on a parametric modal model which is a Taylor expansion approximation of the eigenfrequencies in the neighborhood of a configuration of choice. Eigenfrequency assignment is recast as a quadratic programming problem which can be solved with low computational effort. The method is validated by assigning the lowest eigenfrequency of a two-bar linkage by properly adding point masses. The obtained results indicate that the proposed method can effectively assign the desired eigenfrequency.


Sign in / Sign up

Export Citation Format

Share Document