Natural Convection in a Cylindrical Porous Enclosure With Internal Heat Generation
A numerical study is performed on natural convection inside a cylindrical enclosure filled with a volumetrically heated, saturated porous medium for the case when the vertical wall is isothermal and the horizontal walls are either adiabatic or isothermally cooled. When the horizontal walls are insulated, the flow in the cavity is unicellular and the temperature field in upper layers is highly stratified. However, if the top wall is cooled, there may exist a multicellular flow and an unstable thermal stratification in the upper region of the cylinder. Under the influence of weak convection, the maximum temperature in the cavity can be considerably higher than that predicted for pure conduction. The local heat flux on the bounding walls is generally a strong function of the Rayleigh number, the aspect ratio, and the wall boundary conditions. The heat removal on the cold upper surface decreases with the aspect ratio, thereby increasing the Nusselt number on the vertical wall. The effect of Rayleigh number is, however, not straightforward. Several correlations are presented for the maximum cavity temperature and the overall Nusselt number.