Analysis of Brief Tension Loss in TLP Tethers

1988 ◽  
Vol 110 (1) ◽  
pp. 43-47 ◽  
Author(s):  
J. N. Brekke ◽  
T. N. Gardner

The avoidance of “slack” tethers is one of the factors which may establish the required tether pretension in a tension leg platform (TLP) design. Selection of an appropriate safety factor on loss of tension depends on how severe the consequences may be. It is sometimes argued that if tethers go slack, the result may be excessive platform pitch or roll motions, tether buckling, or “snap” or “snatch” loading of the tether. The results reported here show that a four-legged TLP would not be susceptible to larger angular motions until two adjacent legs lose tension simultaneously. Even then, this analysis shows that a brief period of tether tension loss (during the passage of a large wave trough) does not lead to excessive platform motion. Similarly, momentary tension loss does not cause large bending stress in the tether or significant tension amplification as the tether undergoes retensioning. This paper presents TLP platform and tether response analysis results for a representative deepwater Gulf of Mexico TLP with large-diameter, self-buoyant tethers. The time-domain, dynamic computer analysis included nonlinear effects and platform/tether coupling.

Author(s):  
Nuno Fonseca ◽  
Eduardo Antunes ◽  
Carlos Guedes Soares

The paper presents a time domain method to calculate the ship responses in heavy weather, including the global structural loads due to whipping. Since large amplitude waves induce nonlinear ship responses, and in particular highly nonlinear vertical structural loads, the equations of motions and structural loads are solved in the time domain. The “partially nonlinear” time domain seakeeping program accounts for the most important nonlinear effects. Slamming forces are given by the contribution of two components: an initial impact due to bottom slamming and flare slamming due to the variation of momentum of the added mass. The hull vibratory response is calculated applying the modal analysis together with direct integration of the differential equations in the time domain. The structural dynamic characteristics of the hull are modeled by a finite element representation of a Timoshenko beam accounting for the shear deformation and rotary inertia. The calculation procedure is applied to a frigate advancing in regular waves. The contribution of whipping loads to the vertical bending moments on the ship structure is assessed by comparing this response with and without the hull vibration.


2017 ◽  
Vol 2 (2) ◽  
pp. 415-437 ◽  
Author(s):  
Kai Wang ◽  
Vasilis A. Riziotis ◽  
Spyros G. Voutsinas

Abstract. Wind turbine rotors in idling operation mode can experience high angles of attack within the post-stall region that are capable of triggering stall-induced vibrations. The aim of the present paper is to extend the existing knowledge on the dynamics and aerodynamics of an idling wind turbine and characterize its stability. Rotor stability in slow idling operation is assessed on the basis of nonlinear time domain and linear eigenvalue analyses. The aim is to establish when linear analysis is reliable and identify cases for which nonlinear effects are significant. Analysis is performed for a 10 MW conceptual wind turbine designed by DTU. First, the flow conditions that are likely to favor stall-induced instabilities are identified through nonlinear time domain aeroelastic simulations. Next, for the above specified conditions, eigenvalue stability analysis is performed to identify the low damped modes of the turbine. The eigenvalue stability results are evaluated through computations of the work done by the aerodynamic forces under imposed harmonic motion following the shape and frequency of the various modes. Nonlinear work characteristics predicted by the ONERA and Beddoes–Leishman (BL) dynamic stall models are compared. Both the eigenvalue and work analyses indicate that the asymmetric and symmetric out-of-plane modes have the lowest damping. The results of the eigenvalue analysis agree well with those of the nonlinear work analysis and the time domain simulations.


10.14311/340 ◽  
2002 ◽  
Vol 42 (2) ◽  
Author(s):  
M. Bednařík ◽  
P. Koníček ◽  
M. Červenka

This paper deals with a theoretical description of the propagation of a finite amplitude acoustic waves. The theory based on the homogeneous Burgers equation of the second order of accuracy is presented here. This equation takes into account both nonlinear effects and dissipation. The method for solving this equation, using the well-known Cole-Hopf transformation, is presented. Two methods for numerical solution of these equations in the time domain are presented. The first is based on the simple Simpson method, which is suitable for smaller Goldberg numbers. The second uses the more advanced saddle point method, and is appropriate for large Goldberg numbers.


Author(s):  
Qiang Guo ◽  
Gang Ma ◽  
Liping Sun ◽  
Hongwei Wang ◽  
Na Cui

The tension leg platform is widely used in the world. In this paper, a newly developed tension leg platform is evaluated under the environment loads of the South China Sea. The focus is on the coupling response of the platform hull and tendons. The three dimensional potential theory is used to analyze the new developed tension leg platform and its mooring system in the time domain. The new developed TLP is in a triangular-shape with three group tension legs. Every group consists of five tendons; the mooring system has been optimized after preliminary design. Coupling analysis in time domain has been conducted to evaluate its motion and tendon tension under different environmental loads. The results demonstrate the great improvement in the motion responses of this new developed TLP. The coupled motion responses of this platform with tendon lines system in extreme environmental conditions have also been evaluated in order to evaluate the safety in operation conditions.


Author(s):  
Aleksey Shkolin

This work is devoted to a method for numerically determining the frequency characteristics when modeling nonlinear dynamic objects, in particular during behavioral modeling of pulse converter circuits. The analysis of existing methods for modeling the frequency characteristics of pulse converters is carried out. A technique is given for reducing the amount of calculations when calculating the frequency characteristics of models of nonlinear dynamic pulse systems in the field of their stability based on a calculation in the time domain. This allows one to take into account the essential features of the studied nonlinear objects, in contrast to the linearized models applicable only to the small signal mode. The method is based on the use of correlation analysis when finding the steady-state stationary motion of the simulated object in the time domain while varying the frequency of the harmonic input signal. The results of modeling using the proposed approach are presented.


Author(s):  
Zachary J. Taylor ◽  
Pierre-Olivier Dallaire ◽  
Stoyan T. Stoyanoff

<p>The process to arrive at design wind loads for long-span bridges involves experimental testing and analytical methods. Time domain simulations are becoming increasingly common and many available studies demonstrate results of buffeting response analysis in the time domain. However, there is significantly more to the process than the response analysis to derive wind loads that can be applied practically for design. The current study focuses on two key aspects required to derive design wind loads: prediction of the peak modal deflection and derivation of modal combination coefficients using objective functions.</p>


1983 ◽  
Vol 50 (2) ◽  
pp. 415-420 ◽  
Author(s):  
W. D. Iwan ◽  
C. M. Krousgrill

An approximate method is presented for determining the dynamical response of certain continuous nonlinear systems. In the proposed method, the system equation is linearized in the time domain prior to generation of a solution in the spatial domain. The approach is particularly suited to problems with complex boundary conditions which make selection of realistic global, spatial, domain comparison functions difficult. The approach is ideally suited to problems where discretization using finite elements is appropriate. The transverse response of a nonlinear rectangular plate is examined by way of the application of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document