Whipping Response of Vessels With Large Amplitude Motions

Author(s):  
Nuno Fonseca ◽  
Eduardo Antunes ◽  
Carlos Guedes Soares

The paper presents a time domain method to calculate the ship responses in heavy weather, including the global structural loads due to whipping. Since large amplitude waves induce nonlinear ship responses, and in particular highly nonlinear vertical structural loads, the equations of motions and structural loads are solved in the time domain. The “partially nonlinear” time domain seakeeping program accounts for the most important nonlinear effects. Slamming forces are given by the contribution of two components: an initial impact due to bottom slamming and flare slamming due to the variation of momentum of the added mass. The hull vibratory response is calculated applying the modal analysis together with direct integration of the differential equations in the time domain. The structural dynamic characteristics of the hull are modeled by a finite element representation of a Timoshenko beam accounting for the shear deformation and rotary inertia. The calculation procedure is applied to a frigate advancing in regular waves. The contribution of whipping loads to the vertical bending moments on the ship structure is assessed by comparing this response with and without the hull vibration.

Author(s):  
Suresh Rajendran ◽  
Nuno Fonseca ◽  
C. Guedes Soares

The time domain method is further extended here in order to calculate the hydroelastic response of an ultra large containership in regular waves. Based on strip theory, the hydrodynamic and the hydrostatic forces are calculated for the instantaneous wetted surface area. Slamming forces are calculated using a Von Karman approach in which the water pile up during slamming is neglected. Timoshenko beam which takes into account the shear deformation and rotary inertia is used to model the structural dynamic characteristics of the hull. The beam is discretized using the finite element method and the ship vibration is solved using the modal analysis. The method is used to calculate the vertical bending moment acting on an ultra large containership in large amplitude regular waves. The results are compared with the experimental results measured in wave tank.


2012 ◽  
Vol 56 (04) ◽  
pp. 215-233
Author(s):  
Johan T. Tuitman ◽  
Šime Malenica ◽  
Riaan van't Veer

The concept of "generalized modes" is to describe all degrees of freedom by mode shapes and not using any predefined shape, like rigid body modes. Generalized modes in seakeeping computations allow one to calculate the response of a single ship, springing, whipping, multibody interaction, etc., using a uniform approach. The generalized modes have already been used for frequency-domain seakeeping calculations by various authors. This article extents the generalized modes methodology to be used for time-domain seakeeping computations, which accounts for large-amplitude motions of the rigid-body modes. The time domain can be desirable for seakeeping computations because it is easy to include nonlinear load components and to compute transient response, like slamming and whipping. Results of multibody interaction, two barges connected by a hinge, whipping response of a ferry resulting from slamming loads, and the response of a flexible barge are presented to illustrate the theory.


Author(s):  
Wei Qiu ◽  
Hongxuan Peng

Based on the panel-free method, large-amplitude motions of floating offshore structures have been computed by solving the body-exact problem in the time domain using the exact geometry. The body boundary condition is imposed on the instantaneous wetted surface exactly at each time step. The free surface boundary is assumed linear so that the time-domain Green function can be applied. The instantaneous wetted surface is obtained by trimming the entire NURBS surfaces of a floating structure. At each time step, Gaussian points are automatically distributed on the instantaneous wetted surface. The velocity potentials and velocities are computed accurately on the body surface by solving the desingularized integral equations. Nonlinear Froude-Krylov forces are computed on the instantaneous wetted surface under the incident wave profile. Validation studies have been carried out for a Floating Production Storage and Offloading (FPSO) vessel. Computed results were compared with experimental results and solutions by the panel method.


1998 ◽  
Vol 42 (02) ◽  
pp. 139-153 ◽  
Author(s):  
N. Fonseca ◽  
C. Guedes Soares

The vertical motions and wave induced loads on ships with forward speed are studied in the time domain, considering non-linear effects associated with large amplitude motions and hull flare shape. The method is based on a strip theory, using singularities distributed on the cross sections which satisfy the linear free surface condition. The solution is obtained in the time domain using convolution to account for the memory effects related to the free surface oscillations. In this way the linear radiation forces are represented in terms of impulse response functions, infinite frequency added masses and radiation restoring coefficients. The diffraction forces associated with incident wave scattering are linear. The hydrostatic and Froude-Krylov forces are evaluated over the instantaneous wetted surface of the hull to account for the large amplitude motions and hull flare. The radiation contribution for wave loads is also obtained in the time domain using convolution to account for the memory effects related to the free surface oscillations. Results of motions and wave loads for the S175 container ship are presented and analyzed. The results from the present method are compared with linear results.


2019 ◽  
Vol 11 (16) ◽  
pp. 1839
Author(s):  
Xu Meng ◽  
Sixin Liu ◽  
Yi Xu ◽  
Lei Fu

Full waveform inversion (FWI) can yield high resolution images and has been applied in Ground Penetrating Radar (GPR) for around 20 years. However, appropriate selection of the initial models is important in FWI because such an inversion is highly nonlinear. The conventional way to obtain the initial models for GPR FWI is ray-based tomogram inversion which suffers from several inherent shortcomings. In this paper, we develop a Laplace domain waveform inversion to obtain initial models for the time domain FWI. The gradient expression of the Laplace domain waveform inversion is deduced via the derivation of a logarithmic object function. Permittivity and conductivity are updated by using the conjugate gradient method. Using synthetic examples, we found that the value of the damping constant in the inversion cannot be too large or too small compared to the dominant frequency of the radar data. The synthetic examples demonstrate that the Laplace domain waveform inversion provide slightly better initial models for the time domain FWI than the ray-based inversion. Finally, we successfully applied the algorithm to one field data set, and the inverted results of the Laplace-based FWI show more details than that of the ray-based FWI.


1988 ◽  
Vol 110 (1) ◽  
pp. 43-47 ◽  
Author(s):  
J. N. Brekke ◽  
T. N. Gardner

The avoidance of “slack” tethers is one of the factors which may establish the required tether pretension in a tension leg platform (TLP) design. Selection of an appropriate safety factor on loss of tension depends on how severe the consequences may be. It is sometimes argued that if tethers go slack, the result may be excessive platform pitch or roll motions, tether buckling, or “snap” or “snatch” loading of the tether. The results reported here show that a four-legged TLP would not be susceptible to larger angular motions until two adjacent legs lose tension simultaneously. Even then, this analysis shows that a brief period of tether tension loss (during the passage of a large wave trough) does not lead to excessive platform motion. Similarly, momentary tension loss does not cause large bending stress in the tether or significant tension amplification as the tether undergoes retensioning. This paper presents TLP platform and tether response analysis results for a representative deepwater Gulf of Mexico TLP with large-diameter, self-buoyant tethers. The time-domain, dynamic computer analysis included nonlinear effects and platform/tether coupling.


2011 ◽  
Vol 117-119 ◽  
pp. 174-179
Author(s):  
Qiong Fen Wang ◽  
Ji Yao ◽  
Liang Cao ◽  
Jian Bin Xie ◽  
Chun Li Guo

In this paper, asymmetric twin tower high buildings with large bases were studied and the FEM model of asymmetric twin tower high building with large bases was established. Then the structural dynamic characteristics was analyzed, the x-direction and y-direction level seismic excitation were input separately with the help of time-domain analysis method, and the acceleration time-domain curve of the top of the structure was obtained, the reference of structural design was provided.


2017 ◽  
Vol 2 (2) ◽  
pp. 415-437 ◽  
Author(s):  
Kai Wang ◽  
Vasilis A. Riziotis ◽  
Spyros G. Voutsinas

Abstract. Wind turbine rotors in idling operation mode can experience high angles of attack within the post-stall region that are capable of triggering stall-induced vibrations. The aim of the present paper is to extend the existing knowledge on the dynamics and aerodynamics of an idling wind turbine and characterize its stability. Rotor stability in slow idling operation is assessed on the basis of nonlinear time domain and linear eigenvalue analyses. The aim is to establish when linear analysis is reliable and identify cases for which nonlinear effects are significant. Analysis is performed for a 10 MW conceptual wind turbine designed by DTU. First, the flow conditions that are likely to favor stall-induced instabilities are identified through nonlinear time domain aeroelastic simulations. Next, for the above specified conditions, eigenvalue stability analysis is performed to identify the low damped modes of the turbine. The eigenvalue stability results are evaluated through computations of the work done by the aerodynamic forces under imposed harmonic motion following the shape and frequency of the various modes. Nonlinear work characteristics predicted by the ONERA and Beddoes–Leishman (BL) dynamic stall models are compared. Both the eigenvalue and work analyses indicate that the asymmetric and symmetric out-of-plane modes have the lowest damping. The results of the eigenvalue analysis agree well with those of the nonlinear work analysis and the time domain simulations.


10.14311/340 ◽  
2002 ◽  
Vol 42 (2) ◽  
Author(s):  
M. Bednařík ◽  
P. Koníček ◽  
M. Červenka

This paper deals with a theoretical description of the propagation of a finite amplitude acoustic waves. The theory based on the homogeneous Burgers equation of the second order of accuracy is presented here. This equation takes into account both nonlinear effects and dissipation. The method for solving this equation, using the well-known Cole-Hopf transformation, is presented. Two methods for numerical solution of these equations in the time domain are presented. The first is based on the simple Simpson method, which is suitable for smaller Goldberg numbers. The second uses the more advanced saddle point method, and is appropriate for large Goldberg numbers.


Sign in / Sign up

Export Citation Format

Share Document