Systematic Study of Film Cooling With a Three-Dimensional Calculation Procedure

1986 ◽  
Vol 108 (1) ◽  
pp. 124-130 ◽  
Author(s):  
A. O. Demuren ◽  
W. Rodi ◽  
B. Scho¨nung

The present paper describes three-dimensional calculations of film cooling by injection from a single row of holes. A systematic study of the influence of different parameters on the cooling effectiveness has been carried out. Twenty-seven test cases have been calculated, varying the injection angle (α = 10/45/90 deg), the relative spacing (s/D = 1.5/3/5) and the blowing rate (M = 0.5/1/2) for the same mainstream conditions. The governing three-dimensional equations are solved by a finite volume method. The turbulent stresses and heat fluxes are obtained from a k–ε model modified to account for nonisotropic eddy viscosities and diffusivities. Examples of predicted velocity and temperature distributions are presented and compared with available experimental data. For all the test cases, the laterally averaged cooling effectiveness is given. On the whole, the agreement with experiments is fairly good, even though there are discrepancies about details in some of the cases. The influence of the individual parameters on the film cooling effectiveness is predicted correctly in all cases. This influence is discussed in some detail and the parameter combination with the best overall cooling performance is identified.

Author(s):  
A. O. Demuren ◽  
W. Rodi ◽  
B. Schönung

The present paper describes three-dimensional calculations of film cooling by injection from a single row of holes. A systematic study of the influence of different parameters on the cooling effectiveness has been carried out. 27 test cases have been calculated, varying the injection angle (α = 10° / 45° / 90°), the relative spacing (s/D = 1.5/3/5) and the blowing rate (M = 0.5/1/2) for the same main-stream conditions. The governing 3D equations are solved by a finite volume method. The turbulent stresses and heat fluxes are obtained from a k-ε model modified to account for non-isotropic eddy viscosities and diffusivities. Examples of predicted velocity and temperature distributions are presented and compared with available experimental data. For all the test cases, the laterally averaged cooling effectiveness is given. On the whole, the agreement with experiments is fairly good, even though there are discrepancies about details in some of the cases. The influence of the individual parameters on the film cooling effectiveness is predicted correctly in all cases. This influence is discussed in some detail and the parameter combination with the best overall cooling performance is identified.


Author(s):  
Ki-Don Lee ◽  
Kwang-Yong Kim

A numerical procedure for shape optimization of a fan-shaped hole is presented to enhance film-cooling effectiveness by combining a three-dimensional Reynolds-averaged Navier-Stokes analysis with the radial neural network method, a well known surrogate modeling technique for optimization. The injection angle of the hole, lateral expansion angle of hole and ratio of length-to-diameter of the hole are chosen as design variables and spatially averaged film-cooling effectiveness is considered as an objective function which is to be maximized. Latin hypercube sampling is used to determine the training points as a mean of the design of experiment. Sequential quadratic programming is used to search for the optimal point from the constructed surrogate. The film-cooling effectiveness has been successfully improved by the optimization with increased values of all design variables as compared to the reference geometry.


2013 ◽  
Vol 716 ◽  
pp. 699-704 ◽  
Author(s):  
Ping Dai ◽  
Nai Yun Yu

Effects of hole shapes on film cooling effectiveness downstream of one row of film holes at the blade were investigated using a three-dimensional finite volume method and multi-block technique. The present study also received velocity vectors about different hole shapes. The hole geometries studied include standard cylindrical hole and forward diffused shaped hole and converging slot-hole. It was found that the film cooling effectiveness of cylindrical holes obviously declined along with increasing the blowing ratio. Results of the shaped holes configuration present a marked improvement, with a high effectiveness at the lateral area between adjacent holes and effectiveness of the converging slot-hole was superior to other holes in various blowing ratios. The film cooling effectiveness realized by the slot-holes compared to the cylindrical and forward diffused shaped holes was more excelled at downstream of the intersection of the two slot-holes. The converging slot-hole and forward diffused shaped hole can reduce the vortex intensity, and then enhance the film cooling effectiveness.


Author(s):  
Gaoliang Liao ◽  
Xinjun Wang ◽  
Jun Li ◽  
Feng Zhang

The effect of curvature on the film cooling characteristics of Double-Jet Film Cooling (DJFC) was numerically investigated using three-dimensional Reynolds-Averaged Navier-Stokes (RANS). The low-Reynolds number shear stress transport (SST) model was employed as the turbulence closure model. Six different curved surfaces and a flat surface were tested numerically. The blowing ratios were from 0.66 to 1.99, and the compound injection angle with respect to the cooled surface was 30 degree. The blowing ratios and the curvature of cooled surface have crucial effects on the film cooling effectiveness. The numerical results show that there are two peek value of the averaged film cooling effectiveness along the mainstream direction. The results also indicate that the film cooling effectiveness of a specified curved surface depends on the reasonable selection of the slope of curved surface and blowing ratios.


2013 ◽  
Vol 740 ◽  
pp. 836-841
Author(s):  
Ping Dai ◽  
Nai Yun Yu

Film cooling effectiveness downstream and spanwise distribution of one row of converging slot-holes at the blade were investigated using a three-dimensional finite volume method and multi-block technique at the blowing ratio ranging from 0.5 to 2.0. Previous successful application of a two-layer turbulence model to cylindrical is extended to predict film cooling for the converging slot-hole geometry. Also, the influence of jet angle on film cooling effectiveness from converging slot-holes at the blade was studied. The results showed that the centerline effectiveness of converging slot-hole was going to be increased along with blowing ratio increasing. It was also shown that the uniform lateral spreading of the effectiveness with an enhancement of the intersection of the two slot-holes. It was found that cooling effectiveness for 25° was superior to other jet angle for any blowing ratios. Furthermore, the improvement realized by the small jet angle compared to the other jet angle holes was more important at the higher blowing ratio than it was at the lower one. Cooling effectiveness of 45° and 60° holes was declining along downstream of the holes, but it was improving over again at somewhere from downstream and then it was continuing decline. Cooling effectiveness of 60° holes presented a marked improvement compared to 45° holes at beyond downstream of the holes. Counter rotating vortex pairs at the exit of big jet angle holes were obvious and strong, but these vortexes have been weakened at the exit of small jet angle holes and results in a better coolant protection than that of the big jet angle holes.


Author(s):  
Lesley M. Wright ◽  
Stephen T. McClain ◽  
Charles P. Brown ◽  
Weston V. Harmon

A novel, double hole film cooling configuration is investigated as an alternative to traditional cylindrical and fanshaped, laidback holes. This experimental investigation utilizes a Stereo-Particle Image Velocimetry (S-PIV) to quantitatively assess the ability of the proposed, double hole geometry to weaken or mitigate the counter-rotating vortices formed within the jet structure. The three-dimensional flow field measurements are combined with surface film cooling effectiveness measurements obtained using Pressure Sensitive Paint (PSP). The double hole geometry consists of two compound angle holes. The inclination of each hole is θ = 35°, and the compound angle of the holes is β = ± 45° (with the holes angled toward one another). The simple angle cylindrical and shaped holes both have an inclination angle of θ = 35°. The blowing ratio is varied from M = 0.5 to 1.5 for all three film cooling geometries while the density ratio is maintained at DR = 1.0. Time averaged velocity distributions are obtained for both the mainstream and coolant flows at five streamwise planes across the fluid domain (x/d = −4, 0, 1, 5, and 10). These transverse velocity distributions are combined with the detailed film cooling effectiveness distributions on the surface to evaluate the proposed double hole configuration (compared to the traditional hole designs). The fanshaped, laidback geometry effectively reduces the strength of the kidney-shaped vortices within the structure of the jet (over the entire range of blowing ratios considered). The three-dimensional velocity field measurements indicate the secondary flows formed from the double hole geometry strengthen in the plane perpendicular to the mainstream flow. At the exit of the double hole geometry, the streamwise momentum of the jets is reduced (compared to the single, cylindrical hole), and the geometry offers improved film cooling coverage. However, moving downstream in the steamwise direction, the two jets form a single jet, and the counter-rotating vortices are comparable to those formed within the jet from a single, cylindrical hole. These strong secondary flows lift the coolant off the surface, and the film cooling coverage offered by the double hole geometry is reduced.


2021 ◽  
Vol 143 (2) ◽  
Author(s):  
Fu-qiang Wang ◽  
Jian Pu ◽  
Jian-hua Wang ◽  
Wei-dong Xia

Abstract Film-hole can be often blocked by thermal-barrier coatings (TBCs) spraying, resulting in the variations of aerodynamic and thermal performances of film cooling. In this study, a numerical study of the blockage effect on the film cooling effectiveness of inclined cylindrical-holes was carried out on a concave surface to simulate the airfoil pressure side. Three typical blowing ratios (BRs) of 0.5, 1.0, and 1.5 were chosen at an engine-similar density ratio (DR) of 2.0. Two common inclination angles of 30 deg and 45 deg were designed. The blockage ratios were adjusted from 0 to 20%. The results indicated the blockage could enhance the penetration of film cooling flow to the mainstream. Thus, the averaged effectiveness and coolant coverage area were reduced. Moreover, the pressure loss inside of the hole was increased. With the increase of BR, the decrement of film cooling effectiveness caused by blockage rapidly increased. At BR = 1.5, the decrement could be acquired up to 70% for a blockage ratio of 20%. The decrement of film cooling effectiveness caused by blockage was nearly nonsensitive to the injection angle; however, the larger angle could generate the higher increment of pressure loss caused by blockage. A new design method for the couple scheme of film cooling and TBC was proposed, i.e., increasing the inlet diameter according to the blockage ratio before TBC spraying. In comparison with the original unblocked-hole, the enlarged blocked-hole not only kept the nearly same area-averaged effectiveness but also reduced slightly the pressure loss inside of the hole. Unfortunately, application of enlarged blocked-hole at large BR could lead to a more obvious reduction of effectiveness near hole-exit, in comparison with the original common-hole.


Author(s):  
Jeswin Joseph ◽  
S. R. Shine

Very high thermal loads are expected in re-entry vehicles traveling at hypersonic Mach numbers due to severe aerodynamic heating. In the present study, numerical investigations are carried out to analyze the use of film cooling technology for a fully reusable and active thermal protection system of the re-entry vehicle. Simulations are done to examine the fundamental flow phenomenon and the performance of blunt body film cooling in hypersonic flows. Simulations are conducted for a blunt -nosed spacecraft flying at Mach numbers varying from 4 to 8 and 40 deg angle of attack. Film cooling holes are provided on the bottom of the blunt-nosed body. Standard values at an altitude of 30 km are used as in flow boundary conditions. The dependency of blowing ratios, stream-wise injection angle and inlet Mach number on the film cooling effectiveness are investigated. It is observed that the film cooling effectiveness reduces with increase in coolant injection angle. The film cooling performance is found to be decreasing with increase in Mach number. The results could provide useful inputs for optimization of an active thermal protection system of re-entry vehicles.


Author(s):  
Rui Zhu ◽  
Gongnan Xie ◽  
Terrence W. Simon

Secondary holes to a main film cooling hole are used to improve film cooling performance by creating anti-kidney vortices. The effects of injection angle of the secondary holes on both film cooling effectiveness and surrounding thermal and flow fields are investigated in this numerical study. Two kinds of primary hole shapes are adopted. One is a cylindrical hole, the other is a horn-shaped hole which is designed from a cylindrical hole by expanding the hole in the transverse direction to double the hole size at the exit. Two smaller cylindrical holes, the secondary holes, are located symmetrically about the centerline and downstream of the primary hole. Three compound injection angles (α = 30°, 45° and 60°, β = 30°) of the secondary holes are analyzed while the injection angle of the primary hole is kept at 45°. Cases with various blowing ratios are computed. It is shown from the simulation that cooling effectiveness of secondary holes with a horn-shaped primary hole is better than that with a cylindrical primary hole, especially at high blowing ratios. With a cylindrical primary hole, increasing inclination angle of the secondary holes provides better cooling effectiveness because the anti-kidney vortices created by shallow secondary holes cannot counteract the kidney vortex pairs adequately, enhancing mixing of main flow and coolant. For secondary holes with a horn-shaped primary hole, large secondary hole inclination angles provide better cooling performance at low blowing ratios; but, at high blowing ratios, secondary holes with small inclination angles are more effective, as the film coverage becomes wider in the downstream area.


Sign in / Sign up

Export Citation Format

Share Document