An Asymptotic Method to Analyze the Vibrations of an Elastic Layer

1969 ◽  
Vol 36 (1) ◽  
pp. 65-72 ◽  
Author(s):  
J. D. Achenbach

The displacement components for both free and forced vibrations are sought as power series of the dimensionless wave number ε, where ε = 2π × layer thickness/wavelength. For the free vibration problem the object is to determine the frequencies, which are also sought as power series of the dimensionless wave number. The displacement and frequency expansions are substituted in the displacement equations of motion and in the boundary conditions. By collecting terms of the same order εn, a system of second-order, inhomogeneous, ordinary differential equations of the Helmholtz type is obtained, with the thickness variable as independent variable, and with associated boundary conditions. For free vibrations, subsequent integration yields the coefficients of εn for the displacements and the frequencies for all modes, and in the whole range of frequencies, but in a range of dimensionless wave numbers 0 < ε < ε* < 1, where ε* increases as more terms are retained in the expansions. For forced vibrations, the amplitudes are determined in an analogous manner if the external surface tractions are of sinusoidal dependence on the in-plane coordinates and on time. The response to surface tractions of more general spatial dependence is obtained by Fourier superposition.

1976 ◽  
Vol 98 (3) ◽  
pp. 820-826 ◽  
Author(s):  
C. C. Huang ◽  
T. C. Huang

In a previous paper, the correspondence principle has been applied to derive the differential equations of motion of viscoelastic Timoshenko beams with or without external viscous damping. To study free vibrations these equations are solved by Laplace transform and boundary conditions are applied to obtain the attenuation factor and the frequency of the damped free vibrations and mode shapes. The present paper continues to analyze this subject and deals with the responses in deflection, bending slope, bending moment and shear for forced vibrations. Laplace transform and appropriate boundary conditions have been applied. Examples are given and results are plotted. The solution of forced vibrations of elastic Timoshenko beams obtained as a result of reduction from viscoelastic case and by eigenfunction expansion method concludes the paper.


2015 ◽  
Vol 07 (05) ◽  
pp. 1550076 ◽  
Author(s):  
Reza Ansari ◽  
Mostafa Faghih Shojaei ◽  
Vahid Mohammadi ◽  
Raheb Gholami ◽  
Mohammad Ali Darabi

In this paper, a geometrically nonlinear first-order shear deformable nanoplate model is developed to investigate the size-dependent geometrically nonlinear free vibrations of rectangular nanoplates considering surface stress effects. For this purpose, according to the Gurtin–Murdoch elasticity theory and Hamilton's principle, the governing equations of motion and associated boundary conditions of nanoplates are derived first. Afterwards, the set of obtained nonlinear equations is discretized using the generalized differential quadrature (GDQ) method and then solved by a numerical Galerkin scheme and pseudo arc-length continuation method. Finally, the effects of important model parameters including surface elastic modulus, residual surface stress, surface density, thickness and boundary conditions on the vibration characteristics of rectangular nanoplates are thoroughly investigated. It is found that with the increase of the thickness, nanoplates can experience different vibrational behavior depending on the type of boundary conditions.


2014 ◽  
Vol 2 (1) ◽  
Author(s):  
Erasmo Viola ◽  
Marco Miniaci ◽  
Nicholas Fantuzzi ◽  
Alessandro Marzani

AbstractThis paper investigates the in-plane free vibrations of multi-stepped and multi-damaged parabolic arches, for various boundary conditions. The axial extension, transverse shear deformation and rotatory inertia effects are taken into account. The constitutive equations relating the stress resultants to the corresponding deformation components refer to an isotropic and linear elastic material. Starting from the kinematic hypothesis for the in-plane displacement of the shear-deformable arch, the equations of motion are deduced by using Hamilton’s principle. Natural frequencies and mode shapes are computed using the Generalized Differential Quadrature (GDQ) method. The variable radius of curvature along the axis of the parabolic arch requires, compared to the circular arch, a more complex formulation and numerical implementation of the motion equations as well as the external and internal boundary conditions. Each damage is modelled as a combination of one rotational and two translational elastic springs. A parametric study is performed to illustrate the influence of the damage parameters on the natural frequencies of parabolic arches for different boundary conditions and cross-sections with localizeddamage.Results for the circular arch, derived from the proposed parabolic model with the derivatives of some parameters set to zero, agree well with those published over the past years.


Author(s):  
Ming Ji ◽  
Kazuaki Inaba

The natural frequencies of free vibrations for thick cylindrical shells with clamped-clamped ends conveying fluid are investigated. Equations of motion and boundary conditions are derived by Hamilton’s principle based on the new high order shell theory. The hydrodynamic force is derived from the linearized potential flow theory. Besides, fluid pressure acting on the shell wall is gotten by the assumption of non-penetration condition. The out-of-plane and in-plane vibrations are coupled together due to the existence of fluid-solid-interaction (FSI). Under the assumption of harmonic motion, the dispersion relationships are presented. Using the method of frequency sweeping, the natural frequencies of symmetric modes and asymmetric modes corresponding to each flow velocity are found by satisfying the dispersion relationship equations and boundary conditions. Several numerical examples with different flow velocities and thickness are presented compared with previous thin shell theory and FEM results and show reasonable agreement. The effects of thickness are discussed.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
İrfan Coşkun ◽  
Demirhan Dolmaseven

The vibration of a circular tunnel in an elastic half space subjected to uniformly distributed dynamic pressure at the inner boundary is studied in this paper. For comparison purposes, two different ground materials (soft and hard soil) are considered for the half space. Under the assumption of plane strain, the equations of motion for the tunnel and the surrounding medium are reduced to two wave equations in polar coordinates using Helmholtz potentials. The method of wave expansion is used to construct the displacement fields in terms of displacement potentials. The boundary conditions associated with the problem are satisfied exactly at the inner surface of the tunnel and at the interface between the tunnel and surrounding medium, and they are satisfied approximately at the free surface of the half space. A least-squares technique is used for satisfying the stress-free boundary conditions at the half space. It is shown by comparison that the stresses and displacements are significantly influenced by the properties of the surrounding soil, wave number (i.e., the frequency), depth of embedment, and thickness of the tunnel wall.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Ivo Senjanović ◽  
Marko Tomić ◽  
Nikola Vladimir ◽  
Dae Seung Cho

In the present thick plate vibration theory, governing equations of force-displacement relations and equilibrium of forces are reduced to the system of three partial differential equations of motion with total deflection, which consists of bending and shear contribution, and angles of rotation as the basic unknown functions. The system is starting one for the application of any analytical or numerical method. Most of the analytical methods deal with those three equations, some of them with two (total and bending deflection), and recently a solution based on one equation related to total deflection has been proposed. In this paper, a system of three equations is reduced to one equation with bending deflection acting as a potential function. Method of separation of variables is applied and analytical solution of differential equation is obtained in closed form. Any combination of boundary conditions can be considered. However, the exact solution of boundary value problem is achieved for a plate with two opposite simply supported edges, while for mixed boundary conditions, an approximate solution is derived. Numerical results of illustrative examples are compared with those known in the literature, and very good agreement is achieved.


2018 ◽  
Vol 196 ◽  
pp. 01056
Author(s):  
Magdalena Ataman

In the paper vibrations of the Timoshenko beam on an inertial foundation subjected to a moving force are discussed. Considered model of the inertial foundation is described by three parameters. They take into account elasticity, shear and inertia of the subgrade. In the literature such model of the subgrade is called Vlasov or Vlasov-Leontiev model. The Timoshenko beam is traversed by a concentrated load, moving with uniform speed. Response of the beam is found from the governing equations of motion of the problem. Problem of forced vibrations and problem of free vibrations of the beam are solved. Damping of the system is taken into consideration. Solution of the problem is illustrated by numerical example.


2013 ◽  
Vol 2013 ◽  
pp. 1-10
Author(s):  
Alejandro R. Ratazzi ◽  
Diana V. Bambill ◽  
Carlos A. Rossit

The study of the dynamic properties of beam structures is extremely important for proper structural design. This present paper deals with the free in-plane vibrations of a system of two orthogonal beam members with an internal elastic hinge. The system is clamped at one end and is elastically connected at the other. Vibrations are analyzed for different boundary conditions at the elastically connected end, including classical conditions such as clamped, simply supported, and free. The beam system is assumed to behave according to the Bernoulli-Euler theory. The governing equations of motion of the structural system in free bending vibration are derived using Hamilton's principle. The exact expression for natural frequencies is obtained using the calculus of variations technique and the method of separation of variables. In the frequency analysis, special attention is paid to the influence of the flexibility and location of the elastic hinge. Results are very similar with those obtained using the finite element method, with values of particular cases of the model available in the literature, and with measurements in an experimental device.


Author(s):  
A. Cutolo ◽  
V. Mallardo ◽  
M. Fraldi ◽  
E. Ruocco

Abstract The focus of the present work is to present an analytical approach for buckling and free vibrations analysis of thick functionally graded nanoplates embedded in a Winkler-Pasternak medium. The equations of motion are derived according to both the third-order shear deformation theory, proposed by Reddy, and the nonlocal elasticity Eringen's model. For the first time, the equations are solved analytically for plates with two simply supported opposite edges, the solutions also turning helpful as shape functions in the analysis of structures with more complex geometries and boundary conditions. Sensitivity analyses are finally performed to highlight the role of nonlocal parameters, aspect and side-to-thickness ratios, boundary conditions, and functionally graded material properties in the overall response of plates and cylindrical shells. It is felt that the proposed strategy could be usefully adopted as benchmark solutions in numerical routines as well as for predicting some unexpected behaviors, for instance, in terms of buckling load, in thick nanoplates on elastic foundations.


1963 ◽  
Vol 30 (4) ◽  
pp. 559-561 ◽  
Author(s):  
Chong-Hung Zee

The second-order nonlinear differential equations of motion in the case of a rocket in drag-free powered-flight under constant transverse (normal to the focal radius) thrust are solved by series expansion developed to the seventh power of the independent variable “time.” The coefficients of the powers of time are in terms of given boundary conditions. The truncation errors of the series are estimated, hence the accuracy for any practical problem based on the analysis presented in this paper could be well established. The case of constant transverse thrust acceleration, which may be conceived as a special case of the present analysis, is also solved.


Sign in / Sign up

Export Citation Format

Share Document