A Nonlinear Shear Deformable Nanoplate Model Including Surface Effects for Large Amplitude Vibrations of Rectangular Nanoplates with Various Boundary Conditions

2015 ◽  
Vol 07 (05) ◽  
pp. 1550076 ◽  
Author(s):  
Reza Ansari ◽  
Mostafa Faghih Shojaei ◽  
Vahid Mohammadi ◽  
Raheb Gholami ◽  
Mohammad Ali Darabi

In this paper, a geometrically nonlinear first-order shear deformable nanoplate model is developed to investigate the size-dependent geometrically nonlinear free vibrations of rectangular nanoplates considering surface stress effects. For this purpose, according to the Gurtin–Murdoch elasticity theory and Hamilton's principle, the governing equations of motion and associated boundary conditions of nanoplates are derived first. Afterwards, the set of obtained nonlinear equations is discretized using the generalized differential quadrature (GDQ) method and then solved by a numerical Galerkin scheme and pseudo arc-length continuation method. Finally, the effects of important model parameters including surface elastic modulus, residual surface stress, surface density, thickness and boundary conditions on the vibration characteristics of rectangular nanoplates are thoroughly investigated. It is found that with the increase of the thickness, nanoplates can experience different vibrational behavior depending on the type of boundary conditions.

1987 ◽  
Vol 52 (8) ◽  
pp. 1888-1904
Author(s):  
Miloslav Hošťálek ◽  
Ivan Fořt

A theoretical model is described of the mean two-dimensional flow of homogeneous charge in a flat-bottomed cylindrical tank with radial baffles and six-blade turbine disc impeller. The model starts from the concept of vorticity transport in the bulk of vortex liquid flow through the mechanism of eddy diffusion characterized by a constant value of turbulent (eddy) viscosity. The result of solution of the equation which is analogous to the Stokes simplification of equations of motion for creeping flow is the description of field of the stream function and of the axial and radial velocity components of mean flow in the whole charge. The results of modelling are compared with the experimental and theoretical data published by different authors, a good qualitative and quantitative agreement being stated. Advantage of the model proposed is a very simple schematization of the system volume necessary to introduce the boundary conditions (only the parts above the impeller plane of symmetry and below it are distinguished), the explicit character of the model with respect to the model parameters (model lucidity, low demands on the capacity of computer), and, in the end, the possibility to modify the given model by changing boundary conditions even for another agitating set-up with radially-axial character of flow.


2014 ◽  
Vol 136 (5) ◽  
Author(s):  
R. D. Firouz-Abadi ◽  
M. Rahmanian ◽  
M. Amabili

The present study considers the free vibration analysis of moderately thick conical shells based on the Novozhilov theory. The higher order governing equations of motion and the associate boundary conditions are obtained for the first time. Using the Frobenius method, exact base solutions are obtained in the form of power series via general recursive relations which can be applied for any arbitrary boundary conditions. The obtained results are compared with the literature and very good agreement (up to 4%) is achieved. A comprehensive parametric study is performed to provide an insight into the variation of the natural frequencies with respect to thickness, semivertex angle, circumferential wave numbers for clamped (C), and simply supported (SS) boundary conditions.


1969 ◽  
Vol 36 (1) ◽  
pp. 65-72 ◽  
Author(s):  
J. D. Achenbach

The displacement components for both free and forced vibrations are sought as power series of the dimensionless wave number ε, where ε = 2π × layer thickness/wavelength. For the free vibration problem the object is to determine the frequencies, which are also sought as power series of the dimensionless wave number. The displacement and frequency expansions are substituted in the displacement equations of motion and in the boundary conditions. By collecting terms of the same order εn, a system of second-order, inhomogeneous, ordinary differential equations of the Helmholtz type is obtained, with the thickness variable as independent variable, and with associated boundary conditions. For free vibrations, subsequent integration yields the coefficients of εn for the displacements and the frequencies for all modes, and in the whole range of frequencies, but in a range of dimensionless wave numbers 0 < ε < ε* < 1, where ε* increases as more terms are retained in the expansions. For forced vibrations, the amplitudes are determined in an analogous manner if the external surface tractions are of sinusoidal dependence on the in-plane coordinates and on time. The response to surface tractions of more general spatial dependence is obtained by Fourier superposition.


1976 ◽  
Vol 98 (3) ◽  
pp. 820-826 ◽  
Author(s):  
C. C. Huang ◽  
T. C. Huang

In a previous paper, the correspondence principle has been applied to derive the differential equations of motion of viscoelastic Timoshenko beams with or without external viscous damping. To study free vibrations these equations are solved by Laplace transform and boundary conditions are applied to obtain the attenuation factor and the frequency of the damped free vibrations and mode shapes. The present paper continues to analyze this subject and deals with the responses in deflection, bending slope, bending moment and shear for forced vibrations. Laplace transform and appropriate boundary conditions have been applied. Examples are given and results are plotted. The solution of forced vibrations of elastic Timoshenko beams obtained as a result of reduction from viscoelastic case and by eigenfunction expansion method concludes the paper.


2014 ◽  
Vol 2 (1) ◽  
Author(s):  
Erasmo Viola ◽  
Marco Miniaci ◽  
Nicholas Fantuzzi ◽  
Alessandro Marzani

AbstractThis paper investigates the in-plane free vibrations of multi-stepped and multi-damaged parabolic arches, for various boundary conditions. The axial extension, transverse shear deformation and rotatory inertia effects are taken into account. The constitutive equations relating the stress resultants to the corresponding deformation components refer to an isotropic and linear elastic material. Starting from the kinematic hypothesis for the in-plane displacement of the shear-deformable arch, the equations of motion are deduced by using Hamilton’s principle. Natural frequencies and mode shapes are computed using the Generalized Differential Quadrature (GDQ) method. The variable radius of curvature along the axis of the parabolic arch requires, compared to the circular arch, a more complex formulation and numerical implementation of the motion equations as well as the external and internal boundary conditions. Each damage is modelled as a combination of one rotational and two translational elastic springs. A parametric study is performed to illustrate the influence of the damage parameters on the natural frequencies of parabolic arches for different boundary conditions and cross-sections with localizeddamage.Results for the circular arch, derived from the proposed parabolic model with the derivatives of some parameters set to zero, agree well with those published over the past years.


Author(s):  
Ming Ji ◽  
Kazuaki Inaba

The natural frequencies of free vibrations for thick cylindrical shells with clamped-clamped ends conveying fluid are investigated. Equations of motion and boundary conditions are derived by Hamilton’s principle based on the new high order shell theory. The hydrodynamic force is derived from the linearized potential flow theory. Besides, fluid pressure acting on the shell wall is gotten by the assumption of non-penetration condition. The out-of-plane and in-plane vibrations are coupled together due to the existence of fluid-solid-interaction (FSI). Under the assumption of harmonic motion, the dispersion relationships are presented. Using the method of frequency sweeping, the natural frequencies of symmetric modes and asymmetric modes corresponding to each flow velocity are found by satisfying the dispersion relationship equations and boundary conditions. Several numerical examples with different flow velocities and thickness are presented compared with previous thin shell theory and FEM results and show reasonable agreement. The effects of thickness are discussed.


2006 ◽  
Author(s):  
M. Amabili

Geometrically nonlinear vibrations of circular cylindrical panels with different boundary conditions and subjected to harmonic excitation are numerically investigated. The Donnell's nonlinear strain-displacement relationships are used to describe geometric nonlinearity; in-plane inertia is taken into account. Different boundary conditions are studied and the results are compared; for all of them zero normal displacements at the edges are assumed. In particular, three models are considered in order to investigate the effect of different boundary conditions: Model A for free in-plane displacement orthogonal to the edges, elastic distributed springs tangential to the edges and free rotation; Model B for classical simply supported edges; Model C for fixed edges and distributed rotational springs at the edges. Clamped edges are obtained with the Model C for very high value of the stiffness of rotational springs. The nonlinear equations of motion are obtained by the Lagrange multi-mode approach, and are studied by using the code AUTO based on pseudo-arclength continuation method. Convergence of the solution with the number of generalized coordinates is numerically verified. Complex nonlinear dynamics is also investigated by using bifurcation diagrams from direct time integration and calculation of the Lyapunov exponents and the Lyapunov dimension. Interesting phenomena such as (i) subharmonic response, (ii) period doubling bifurcations, (iii) chaotic behavior and (iv) hyper-chaos with four positive Lyapunov exponents have been observed.


2015 ◽  
Vol 32 (3) ◽  
pp. 277-287 ◽  
Author(s):  
D. S. Mashat ◽  
A. M. Zenkour ◽  
M. Sobhy

AbstractAnalyses of free vibration and thermal buckling of nanobeams using nonlocal shear deformation beam theories under various boundary conditions are precisely illustrated. The present beam is restricted by vertically distributed identical springs at the top and bottom surfaces of the beam. The equations of motion are derived using the dynamic version of Hamilton's principle. The governing equations are solved analytically when the edges of the beam are simply supported, clamped or free. Thermal buckling solution is formulated for two types of temperature change through the thickness of the beam: Uniform and linear temperature rise. To validate the accuracy of the results of the present analysis, the results are compared, as possible, with solutions found in the literature. Furthermore, the influences of nonlocal coefficient, stiffness of Winkler springs and span-to-thickness ratio on the frequencies and thermal buckling of the embedded nanobeams are examined.


Sign in / Sign up

Export Citation Format

Share Document