Correlation of Subatmospheric Pressure, Saturated, Pool Boiling of Water on a Structured-Porous Surface

2011 ◽  
Vol 133 (4) ◽  
Author(s):  
Sean J. Penley ◽  
R. A. Wirtz

Saturated pool-boiling experiments at 1 atm and subatmospheric pressure assess the utility of fine-filament screen-laminate enhanced surfaces as effective bubble nucleation sites. Experiments were conducted on vertically oriented, multilayer laminates in saturated distilled water at pressures of 0.2–1.0 atm. The performance of 12 different copper-filament surfaces, having pore hydraulic diameters ranging from 14 μm to 172 μm, is documented. Experimental results show that boiling performance is a strong function of screen-laminate geometry. In the present work, enhancement of up to 27 times that of an unenhanced surface was obtained at a superheat of 8 K and a pressure of 0.2 atm. Dimensional analysis and multiparameter regression are used to develop a heat transfer correlation that relates the boiling heat transfer coefficient to the lamination geometry.

2012 ◽  
Vol 550-553 ◽  
pp. 2913-2916 ◽  
Author(s):  
Jin Liang Tao ◽  
Xin Liang Wang ◽  
Pei Hua Shi ◽  
Xiao Ping Shi

In this paper, a new porous coating was formed directly on the surface of titanium metal via anodic oxidation. And by the SEM, the morphology of the coating, which is composed of well-ordered perpendicular nanotubes, was characterized. Moreover, taking deionized water as the test fluid, a visualization study of the coating on its pool boiling heat transfer performance was made. The results demonstrated that compared with the smooth surface, the nucleate boiling heat transfer coefficient can increase 3 times while the nucleate boiling super heat was reduced 30%.


1997 ◽  
Vol 119 (1) ◽  
pp. 142-151 ◽  
Author(s):  
Shou-Shing Hsieh ◽  
Chun-Jen Weng

Measurements of pool-boiling heat transfer coefficients in distilled water and R-134a/oil mixtures with up to 10 percent (by weight) miscible EMKARATE RL refrigeration lubricant oil are extensively studied for a smooth tube and four rib-roughened tubes (rib pitch 39.4 mm, rib height 4 mm, rib width 15 mm, number of rib element 8, rib angle 30 deg–90 deg). Boiling data of pure refrigerants and oil mixtures, as well as the influences of heat flux level on heat transfer coefficient, are presented and discussed. A correlation is developed for predicting the heat transfer coefficient for both pure refrigerants and refrigerant-oil mixtures. Moreover, boiling visualizations were made to broaden our fundamental understanding of the pool boiling heat transfer mechanism for rib roughened surfaces with pure refrigerants and refrigerant-oil mixtures.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Nitin Doifode ◽  
Sameer Gajghate ◽  
Abdul Najim ◽  
Anil Acharya ◽  
Ashok Pise

Effect of uniformly and nonuniformly coated Al2O3 nanoparticles over plain glass tube heater on pool boiling heat transfer was studied experimentally. A borosilicate glass tube coated with Al2O3 nanoparticle was used as test heater. The boiling behaviour was studied by using high speed camera. Result obtained for pool boiling shows enhancement in heat transfer for nanoparticle coated surface heater and compared with plain glass tube heater. Also heat transfer coefficient for nonuniformly coated nanoparticles was studied and compared with uniformly coated and plain glass tube. Coating effect of nanoparticles over glass tube increases its surface roughness and thereby creates more nucleation sites.


2016 ◽  
Vol 24 (04) ◽  
pp. 1630009 ◽  
Author(s):  
Dong Ho Kim ◽  
Ho Won Byun ◽  
Seok Ho Yoon ◽  
Chan Ho Song ◽  
Kong Hoon Lee ◽  
...  

The low GWP refrigerants attract a great attention due to various regulations such as Montreal protocol amendment and F-gas regulation. The amendment of Montreal protocol proposes to reduce the HFCs consumption by 85% until 2035 and F-gas legislation will reduce the HFCs consumption by 79% until 2030. In 2010, US DOE launched the low GWP refrigerant project which covers the lifecycle climate performance modeling, experimental evaluation and field testing. In 2015, Korea launched the project to develop the core technology of refrigeration system for low GWP ([Formula: see text]100) refrigerants application. Since the project limited the GWP value less than 100, the applicable candidates (except for natural working fluids) are restricted about five refrigerants including R-1234yf, R-1234ze-(E), R444A, R-1233zd(E) and R-1336mzz. In the literature, to the best of the author’s knowledge, there is very limited information for pool boiling studies except R-1234yf. In present work, the cycle simulation and the prediction of pool boiling heat transfer coefficient for each refrigerant has been conducted. And the literature review of pool boiling for the refrigerants has been performed.


2016 ◽  
Vol 139 (2) ◽  
Author(s):  
Suchismita Sarangi ◽  
Justin A. Weibel ◽  
Suresh V. Garimella

Immersion cooling strategies often employ surface enhancements to improve the pool boiling heat transfer performance. Sintered particle/powder coatings have been commonly used on smooth surfaces to reduce the wall superheat and increase the critical heat flux (CHF). However, there is no unified understanding of the role of coating characteristics on pool boiling heat transfer enhancement. The morphology and size of the particles affect the pore geometry, permeability, thermal conductivity, and other characteristics of the sintered coating. In turn, these characteristics impact the heat transfer coefficient and CHF during boiling. In this study, pool boiling of FC-72 is experimentally investigated using copper surfaces coated with a layer of sintered copper particles of irregular and spherical morphologies for a range of porosities (∼40–80%). Particles of the same effective diameter (90–106 μm) are sintered to yield identical coating thicknesses (∼4 particle diameters). The porous structure formed by sintering is characterized using microcomputed tomography (μ-CT) scanning to study the geometric and effective thermophysical properties of the coatings. The boiling performance of the porous coatings is analyzed. Coating characteristics that influence the boiling heat transfer coefficient and CHF are identified and their relative strength of dependence analyzed using regression analysis. Irregular particles yield higher heat transfer coefficients compared to spherical particles at similar porosity. The coating porosity, pore diameter, unit necking area, unit interfacial area, effective thermal conductivity, and effective permeability are observed to be the most critical coating properties affecting the boiling heat transfer coefficient and CHF.


Sign in / Sign up

Export Citation Format

Share Document