Abstract
Cavitation generation methods have been applied in multifarious directions due to their diversity. And scholars have carried out numerous researches and discussions on cavitation generation methods. The purpose of this study is to explore the generating mechanism and evolution law of volumetric alternate cavitation (VAC). In the VAC, the liquid water is placed in an airtight container with variable volume. With the volume alternately changes, the liquid water inside the container continues to cavitate. In this study, the mixture turbulence model and in-cylinder dynamic grid model were used to apply computational fluid dynamics (CFD) simulation of volume alternate cavitation. In the simulation, the cloud images at 7 heights on the central axis are monitored, and the phenomenon and mechanism of height and eccentricity are analyzed detailedly. By using the method of cavitation flow visualization (CFV), the generating mechanism and evolution law of cavitation are clarified. The synergistic effects of experiments and high-speed camera capture confirm the simulation. In the experiment, the volume change stroke of the airtight container is 20 mm, the volume change frequency is 18 Hz, and the shooting frequency of the high-speed camera is set to 10000 fps. The results show that the position of occurring cavitation phenomenon has a reasonable law during the whole evolution cycle of the cavitation cloud. It is evident that a cycle of volume alternation corresponds to the generation, development and collapse stages of cavitation bubbles.