Analytical and Experimental Investigation of Self-Loosening of Preloaded Cap Screw Fasteners
In an effort to establish a theoretical outline of a criterion for preventing the vibration-induced loosening of preloaded threaded fasteners, this paper provides an experimental and analytical insight into the effect of the initial bolt preload and the excitation amplitude on the self-loosening performance of a cap screw fastener. A nonlinear model is used for predicting the clamp load loss caused by the vibration-induced loosening of cap screw fasteners under cyclic transverse loading. Experimental verification was conducted on the twisting torque variation and the effect of the preload level and transverse displacement amplitude. Comparison of the experimental and analytical results on the clamp load loss with the number of cycles verifies that the proposed model accurately predicts self-loosening performance.