Characterization of Melting and Solidification Phenomena in Electromagnetic Punching of Aluminum Tubes

2012 ◽  
Vol 134 (1) ◽  
Author(s):  
De Waele Wim ◽  
Faes Koen ◽  
Van Haver Wim

Electromagnetic punching of tubular products is considered to be a promising innovative perforating process. The required punching energy decreases when using high velocities. Also, less tools are required when compared to conventional mechanical punching. However, the increase in punching speed can involve new strain and fracture mechanisms which are characteristic of the dynamic loading. In high energy rate forming processes the effect of temperature versus time gradient on the material properties becomes important due to the heat accumulated from plastic deformation and friction. The deformation induced heating will promote strain localization in it, possibly degrade its formability and cause premature failure in the regions of high localized strain. The feasibility of the electromagnetic pulse forming process for punching holes in aluminum cylindrical specimens has been investigated on an experimental trial-and-error basis. Experiments were performed using a Pulsar system (model 50/25) with a maximum charging energy of 50 kJ and a discharge circuit frequency of 14 kHz. Microscopic and metallographic inspection of the punched workpieces, together with hardness measurements, was performed to critically evaluate the quality of the cuts. It was observed that damage occurred at part of the edge of the punched hole during some of the perforation experiments. It was evidenced that in most workpieces, especially those performed at higher charging energy levels, a considerably high temperature must have been reached in the regions near the punched hole. The aluminum in this region was assumed to have melted and resolidified. These assumptions were affirmed by the following observations. Microscopic-size precipitates present in the unaffected base metal microstructure, had completely dissolved in that region; shrinkage cavities and dendrite rich regions were clearly visible. Next to this region, a heat affected zone was present where the grain boundaries had partially melted and precipitates partially disappeared. Considerably high temperatures, in the order of 520 to 660 °C, were reached in the regions around the punched holes, leading to melting and resolidification of the material. The total width of the thermally affected regions appeared to be larger at higher energy levels. The combination of heat generated by ohmic heating and by plastic deformation in a very short time interval is the most probable cause of the high peak temperatures that have occurred during the electromagnetic punching process.

2021 ◽  
Author(s):  
Alham Al-langawi ◽  

This paper studies the uppermost unit of Kharus Formation (Cambrian) and the Autochthonous Akhdar Group (Permian-Triassic), which unconformably covers the pre-Permian strata. The petrographic and geochemical as well as field observations indicate that the succession underwent different stages of dolomitization that produced rocks inheriting the original host rock textures and structures (fabric-preserving dolomitization) and rocks with complete obliteration of the pre-existing textures (fabric-destroying dolomitization). Dolomites that retain the original fabric of the limestone are indicators of the host rock mineralogy, i.e., whether it was made up of high Mg-calcite or aragonitic allochems and indicate early dolomitization. The top part of the Kharus Formation consists of pervasively dolomitized units, whereas dolomites belonging to the Autochthonous Akhdar Group display variable degrees of structural and textural preservation. The evidence suggests very early dolomitization in a relatively short time interval for the Permian-Triassic carbonates. The preserved depositional features in the Permian-Triassic carbonates indicate deposition in shallow marine environments with variable energy levels. Seven facies are inferred: stromatolites, mudstones, wackestones, intraformational breccias, grainstones, packstones and grain/packstones. Petrographic as well as field observations exclude evidence of evaporites within Palaeozoic-Mesozoic rocks. Five paragenetic phases are determined to explain the type of dolomitization and to indicate the type and severity of diagenesis that affected the Palaeozoic-Mesozoic Tethys Ocean carbonates from the Oman Mountains.


Author(s):  
Kenneth S. Vecchio

Shock-induced reactions (or shock synthesis) have been studied since the 1960’s but are still poorly understood, partly due to the fact that the reaction kinetics are very fast making experimental analysis of the reaction difficult. Shock synthesis is closely related to combustion synthesis, and occurs in the same systems that undergo exothermic gasless combustion reactions. The thermite reaction (Fe2O3 + 2Al -> 2Fe + Al2O3) is prototypical of this class of reactions. The effects of shock-wave passage through porous (powder) materials are complex, because intense and non-uniform plastic deformation is coupled with the shock-wave effects. Thus, the particle interiors experience primarily the effects of shock waves, while the surfaces undergo intense plastic deformation which can often result in interfacial melting. Shock synthesis of compounds from powders is triggered by the extraordinarily high energy deposition rate at the surfaces of the powders, forcing them in close contact, activating them by introducing defects, and heating them close to or even above their melting temperatures.


Author(s):  
O. S. Galinina ◽  
S. D. Andreev ◽  
A. M. Tyurlikov

Introduction: Machine-to-machine communication assumes data transmission from various wireless devices and attracts attention of cellular operators. In this regard, it is crucial to recognize and control overload situations when a large number of such devices access the network over a short time interval.Purpose:Analysis of the radio network overload at the initial network entry stage in a machine-to-machine communication system.Results: A system is considered that features multiple smart meters, which may report alarms and autonomously collect energy consumption information. An analytical approach is proposed to study the operation of a large number of devices in such a system as well as model the settings of the random-access protocol in a cellular network and overload control mechanisms with respect to the access success probability, network access latency, and device power consumption. A comparison between the obtained analytical results and simulation data is also offered. 


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3370
Author(s):  
Emmanouil-George C. Tzanakakis ◽  
Evangelos Skoulas ◽  
Eudoxie Pepelassi ◽  
Petros Koidis ◽  
Ioannis G. Tzoutzas

Lasers have been well integrated in clinical dentistry for the last two decades, providing clinical alternatives in the management of both soft and hard tissues with an expanding use in the field of dental materials. One of their main advantages is that they can deliver very low to very high concentrated power at an exact point on any substrate by all possible means. The aim of this review is to thoroughly analyze the use of lasers in the processing of dental materials and to enlighten the new trends in laser technology focused on dental material management. New approaches for the elaboration of dental materials that require high energy levels and delicate processing, such as metals, ceramics, and resins are provided, while time consuming laboratory procedures, such as cutting restorative materials, welding, and sintering are facilitated. In addition, surface characteristics of titanium alloys and high strength ceramics can be altered. Finally, the potential of lasers to increase the adhesion of zirconia ceramics to different substrates has been tested for all laser devices, including a new ultrafast generation of lasers.


2021 ◽  
Vol 13 (14) ◽  
pp. 2739
Author(s):  
Huizhong Zhu ◽  
Jun Li ◽  
Longjiang Tang ◽  
Maorong Ge ◽  
Aigong Xu

Although ionosphere-free (IF) combination is usually employed in long-range precise positioning, in order to employ the knowledge of the spatiotemporal ionospheric delays variations and avoid the difficulty in choosing the IF combinations in case of triple-frequency data processing, using uncombined observations with proper ionospheric constraints is more beneficial. Yet, determining the appropriate power spectral density (PSD) of ionospheric delays is one of the most important issues in the uncombined processing, as the empirical methods cannot consider the actual ionosphere activities. The ionospheric delays derived from actual dual-frequency phase observations contain not only the real-time ionospheric delays variations, but also the observation noise which could be much larger than ionospheric delays changes over a very short time interval, so that the statistics of the ionospheric delays cannot be retrieved properly. Fortunately, the ionospheric delays variations and the observation noise behave in different ways, i.e., can be represented by random-walk and white noise process, respectively, so that they can be separated statistically. In this paper, we proposed an approach to determine the PSD of ionospheric delays for each satellite in real-time by denoising the ionospheric delay observations. Based on the relationship between the PSD, observation noise and the ionospheric observations, several aspects impacting the PSD calculation are investigated numerically and the optimal values are suggested. The proposed approach with the suggested optimal parameters is applied to the processing of three long-range baselines of 103 km, 175 km and 200 km with triple-frequency BDS data in both static and kinematic mode. The improvement in the first ambiguity fixing time (FAFT), the positioning accuracy and the estimated ionospheric delays are analysed and compared with that using empirical PSD. The results show that the FAFT can be shortened by at least 8% compared with using a unique empirical PSD for all satellites although it is even fine-tuned according to the actual observations and improved by 34% compared with that using PSD derived from ionospheric delay observations without denoising. Finally, the positioning performance of BDS three-frequency observations shows that the averaged FAFT is 226 s and 270 s, and the positioning accuracies after ambiguity fixing are 1 cm, 1 cm and 3 cm in the East, North and Up directions for static and 3 cm, 3 cm and 6 cm for kinematic mode, respectively.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Christiane Schön ◽  
Claudia Reule ◽  
Katharina Knaub ◽  
Antje Micka ◽  
Manfred Wilhelm ◽  
...  

Abstract Background The assessment of improvement or maintenance of joint health in healthy subjects is a great challenge. The aim of the study was the evaluation of a joint stress test to assess joint discomfort in subjects with activity-related knee joint discomfort (ArJD). Results Forty-five subjects were recruited to perform the single-leg-step-down (SLSD) test (15 subjects per group). Subjects with ArJD of the knee (age 22–62 years) were compared to healthy subjects (age 24–59 years) with no knee joint discomfort during daily life sporting activity and to subjects with mild-to-moderate osteoarthritis of the knee joint (OA, Kellgren score 2–3, age 42–64 years). The subjects performed the SLSD test with two different protocols: (I) standardization for knee joint discomfort; (II) standardization for load on the knee joint. In addition, range of motion (ROM), reach test, acute pain at rest and after a single-leg squat and knee injury, and osteoarthritis outcome score (KOOS) were assessed. In OA and ArJD subjects, knee joint discomfort could be reproducibly induced in a short time interval of less than 10 min (200 steps). In healthy subjects, no pain was recorded. A clear differentiation between study groups was observed with the SLSD test (maximal step number) as well as KOOS questionnaire, ROM, and reach test. In addition, a moderate to good intra-class correlation was shown for the investigated outcomes. Conclusions These results suggest the SLSD test is a reliable tool for the assessment of knee joint health function in ArJD and OA subjects to study the improvements in their activities. Further, this model can be used as a stress model in intervention studies to study the impact of stress on knee joint health function.


2008 ◽  
Vol 5 (2) ◽  
pp. 159-164
Author(s):  
Li Bo ◽  
Zhang He ◽  
Zhang Jing ◽  
Sun Bo-Xing ◽  
Chen Lu ◽  
...  

AbstractNine prepubertal gilts (JunMu No. 1) were randomly allocated into three groups (n=3) and fed with a high-energy diet (Group H), a low-energy diet (Group L), or a moderate-energy diet (Group M) for 14 days. Free access to water was provided throughout the research period. Ovaries and uteri were collected after the energy treatments, and processed for determination of the absolute quantities of insulin-like growth factor receptor (IGF-1R) and epidermal growth factor receptor (EGFR) mRNA, using real-time polymerase chain reaction (PCR). The expression of IGF-1R and EGFR mRNA in ovaries and uteri was significantly ranked as: Group H>Group M>Group L (P<0.05). This result suggests that high energy intake markedly enhanced the ovarian and uterine expression of IGF-1R and EGFR in prepubertal gilts, whereas insufficient energy intake markedly inhibited such expression. IGF-1R and EGFR may be involved in mediating the effects of energy intake on the development of the reproductive system in prepubertal gilts.


2010 ◽  
Vol 2010 ◽  
pp. 1-16 ◽  
Author(s):  
Yngve Bergström ◽  
Ylva Granbom ◽  
Dirk Sterkenburg

A dislocation model, accurately describing the uniaxial plastic stress-strain behavior of dual phase (DP) steels, is proposed and the impact of martensite content and ferrite grain size in four commercially produced DP steels is analyzed. It is assumed that the plastic deformation process is localized to the ferrite. This is taken into account by introducing a nonhomogeneity parameter, f(ε), that specifies the volume fraction of ferrite taking active part in the plastic deformation process. It is found that the larger the martensite content the smaller the initial volume fraction of active ferrite which yields a higher initial deformation hardening rate. This explains the high energy absorbing capacity of DP steels with high volume fractions of martensite. Further, the effect of ferrite grain size strengthening in DP steels is important. The flow stress grain size sensitivity for DP steels is observed to be 7 times larger than that for single phase ferrite.


Sign in / Sign up

Export Citation Format

Share Document