scholarly journals A Symbolic Formulation for Analytical Compliance Analysis and Synthesis of Flexure Mechanisms

2012 ◽  
Vol 134 (5) ◽  
Author(s):  
Hai-Jun Su ◽  
Hongliang Shi ◽  
JingJun Yu

This paper presents a symbolic formulation for analytical compliance analysis and synthesis of flexure mechanisms with serial, parallel, or hybrid topologies. Our approach is based on the screw theory that characterizes flexure deformations with motion twists and loadings with force wrenches. In this work, we first derive a symbolic formulation of the compliance and stiffness matrices for commonly used flexure elements, flexure joints, and simple chains. Elements of these matrices are all explicit functions of flexure parameters. To analyze a general flexure mechanism, we subdivide it into multiple structural modules, which we identify as serial, parallel, or hybrid chains. We then analyze each module with the known flexure structures in the library. At last, we use a bottom-up approach to obtain the compliance/stiffness matrix for the overall mechanism. This is done by taking appropriate coordinate transformation of twists and wrenches in space. Four practical examples are provided to demonstrate the approach. A numerical example is employed to compare analytical compliance models against a finite element model. The results show that the errors are sufficiently small (2%, compared with finite element (FE) model), if the range of motion is limited to linear deformations. This work provides a systematical approach for compliance analysis and synthesis of general flexure mechanisms. The symbolic formulation enables subsequent design tasks, such as compliance synthesis or sensitivity analysis.

Author(s):  
Hai-Jun Su ◽  
Hongliang Shi ◽  
JingJun Yu

This paper presents a symbolic formulation for analytical compliance analysis and synthesis of flexure mechanisms with arbitrary topologies. Compliance analysis or mapping is to determine the relationship between the deformation of a mechanism and the external loading applied. It is a crucial step for the control and design of flexure mechanisms. Most of the current work relies on physical experiments or numerical simulations for studying the compliance or stiffness of flexure mechanisms. There is a lack of formal tools for the compliance synthesis whose goal is to determine the geometry of flexures or assembly of multiple flexures for a prescribed compliance in the motion direction of interest. In this work, we first derive a symbolic formulation of the compliance and stiffness matrices for commonly-used flexure elements, flexure joints and simple chains. Elements of these matrices are all explicit functions of flexure parameters. To analyze a complex flexure mechanism, we subdivide the mechanism into multiple structural modules which we identify as serial, parallel or hybrid chains. We then analyze each module with the known flexure structures in the library. At last we use a bottom-up approach to obtain the compliance matrix for the overall mechanism. Our symbolic formulation enables subsequent compliance synthesis or sensitivity analysis which is to determine how each flexure parameter affects the overall compliance of the mechanism. Four practical examples are provided to demonstrate the approach. The result is a robust design method for the compliance analysis and synthesis of flexure mechanisms.


2012 ◽  
Vol 463-464 ◽  
pp. 1169-1174
Author(s):  
Parivash Soleimanian ◽  
Morteza H.Sadeghi ◽  
Akbar Tizfahm

Model updating techniques are used to update the finite element model of a structure, so that updated model can be predicted the dynamic behavior of an actual assembly structure more accurately. Most of the model updating techniques neglects damping and so amplitudes of vibration at resonance and antiresonance frequencies cannot be predicted by using of these updated models. In dynamic design of structures predicting of these properties is necessary. This paper presents a new technique to create an accurate finite element (FE) updated model of complex assembly structures consisting of substructures and real joint by considering damping of them. Given the fact that modal testing of real joints (such as bolt with some washers) are almost impossible. The updated model of assembly structure is obtained in four steps. In the first step, mass and stiffness matrix of substructures, joint and assembly structure are updated using modal data and Eigen-sensitivity approach. In the second step, damping of assembly structure is identified using complex modal data and updated mass and stiffness matrices which are obtained in first step. In the third step, the effect of damping of joint on frequency response functions (FRFs) extracted from updated model was shown. In the forth step, damping matrix of joint is updated by using FRF-based model updating method and finally damped updated model of assembly structure compared with measured data.


Author(s):  
Markus Spiegelhauer ◽  
Berthold Schlecht

AbstractThis article proposes a universal procedure for efficiently modelling the flexible behaviour of pre-stressed cables, guided by multiple pulleys. Such cable-pulley systems usually connect various structural components, which often feature additional flexibility. One concern in holistic system analyses is to correctly describe the elasticity of the entire assembly for one particular spatial configuration. This can be achieved in terms of a linear stiffness matrix that accounts for the kinematics of the assembly. In this article, parametric stiffness matrices for arbitrary cable-pulley arrangements are derived. A reduction scheme is used to facilitate the integration of the derived stiffness matrix into superordinate finite element models. The method is validated with a non-linear finite element model and applied to a complex hoisting cable system connecting multiple large steel structures.


Author(s):  
Ashwini Gautam ◽  
Chris Fuller ◽  
James Carneal

This work presents an extensive analysis of the properties of distributed vibration absorbers (DVAs) and their effectiveness in controlling the sound radiation from the base structure. The DVA acts as a distributed mass absorber consisting of a thin metal sheet covering a layer of acoustic foam (porous media) that behaves like a distributed spring-mass-damper system. To assess the effectiveness of these DVAs in controlling the vibration of the base structures (plate) a detailed finite elements model has been developed for the DVA and base plate structure. The foam was modeled as a poroelastic media using 8 node hexahedral elements. The structural (plate) domain was modeled using 16 degree of freedom plate elements. Each of the finite element models have been validated by comparing the numerical results with the available analytical and experimental results. These component models were combined to model the DVA. Preliminary experiments conducted on the DVAs have shown an excellent agreement between the results obtained from the numerical model of the DVA and from the experiments. The component models and the DVA model were then combined into a larger FE model comprised of a base plate with the DVA treatment on its surface. The results from the simulation of this numerical model have shown that there has been a significant reduction in the vibration levels of the base plate due to DVA treatment on it. It has been shown from this work that the inclusion of the DVAs on the base plate reduces their vibration response and therefore the radiated noise. Moreover, the detailed development of the finite element model for the foam has provided us with the capability to analyze the physics behind the behavior of the distributed vibration absorbers (DVAs) and to develop more optimized designs for the same.


2013 ◽  
Vol 456 ◽  
pp. 576-581 ◽  
Author(s):  
Li Fu Xu ◽  
Na Ta ◽  
Zhu Shi Rao ◽  
Jia Bin Tian

A 2-D finite element model of human cochlea is established in this paper. This model includes the structure of oval window, round window, basilar membrane and cochlear duct which is filled with fluid. The basilar membrane responses are calculated with sound input on the oval window membrane. In order to study the effects of helicotrema on basilar membrane response, three different helicotrema dimensions are set up in the FE model. A two-way fluid-structure interaction numerical method is used to compute the responses in the cochlea. The influence of the helicotrema is acquired and the frequency selectivity of the basilar membrane motion along the cochlear duct is predicted. These results agree with the experiments and indicate much better results are obtained with appropriate helicotrema size.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
B. Asgari ◽  
S. A. Osman ◽  
A. Adnan

The model tuning through sensitivity analysis is a prominent procedure to assess the structural behavior and dynamic characteristics of cable-stayed bridges. Most of the previous sensitivity-based model tuning methods are automatic iterative processes; however, the results of recent studies show that the most reasonable results are achievable by applying the manual methods to update the analytical model of cable-stayed bridges. This paper presents a model updating algorithm for highly redundant cable-stayed bridges that can be used as an iterative manual procedure. The updating parameters are selected through the sensitivity analysis which helps to better understand the structural behavior of the bridge. The finite element model of Tatara Bridge is considered for the numerical studies. The results of the simulations indicate the efficiency and applicability of the presented manual tuning method for updating the finite element model of cable-stayed bridges. The new aspects regarding effective material and structural parameters and model tuning procedure presented in this paper will be useful for analyzing and model updating of cable-stayed bridges.


Author(s):  
J. Rodriguez ◽  
M. Him

Abstract This paper presents a finite element mesh generation algorithm (PREPAT) designed to automatically discretize two-dimensional domains. The mesh generation algorithm is a mapping scheme which creates a uniform isoparametric FE model based on a pre-partitioned domain of the component. The proposed algorithm provides a faster and more accurate tool in the pre-processing phase of a Finite Element Analysis (FEA). A primary goal of the developed mesh generator is to create a finite element model requiring only essential input from the analyst. As a result, the generator code utilizes only a sketch, based on geometric primitives, and information relating to loading/boundary conditions. These conditions represents the constraints that are propagated throughout the model and the available finite elements are uniformly mapped in the resulting sub-domains. Relative advantages and limitations of the mesh generator are discussed. Examples are presented to illustrate the accuracy, efficiency and applicability of PREPAT.


Author(s):  
Sergey Yu. Fialko

A special finite element modelling rigid links is proposed for the linear static and buckling analysis. Unlike the classical approach based on the theorems of rigid body kinematics, the proposed approach preserves the similarity between the adjacency graph for a sparse matrix and the adjacency graph for nodes of the finite element model, which allows applying sparse direct solvers more effectively. Besides, the proposed approach allows significantly reducing the number of nonzero entries in the factored stiffness matrix in comparison with the classical one, which greatly reduces the duration of the solution. For buckling problems of structures containing rigid bodies, this approach gives correct results. Several examples demonstrate its efficiency.


2017 ◽  
Vol 11 (1) ◽  
pp. 1026-1035 ◽  
Author(s):  
Ahmad Basshofi Habieb ◽  
Gabriele Milani ◽  
Tavio Tavio ◽  
Federico Milani

Introduction:An advanced Finite Element model is presented to examine the performance of a low-cost friction based-isolation system in reducing the seismic vulnerability of low-class rural housings. This study, which is mainly numerical, adopts as benchmark an experimental investigation on a single story masonry system eventually isolated at the base and tested on a shaking table in India.Methods:Four friction isolation interfaces, namely, marble-marble, marble-high-density polyethylene, marble-rubber sheet, and marble-geosynthetic were involved. Those interfaces differ for the friction coefficient, which was experimentally obtained through the aforementioned research. The FE model adopted here is based on a macroscopic approach for masonry, which is assumed as an isotropic material exhibiting damage and softening. The Concrete damage plasticity (CDP) model, that is available in standard package of ABAQUS finite element software, is used to determine the non-linear behavior of the house under non-linear dynamic excitation.Results and Conclusion:The results of FE analyses show that the utilization of friction isolation systems could much decrease the acceleration response at roof level, with a very good agreement with the experimental data. It is also found that systems with marble-marble and marble-geosynthetic interfaces reduce the roof acceleration up to 50% comparing to the system without isolation. Another interesting result is that there was little damage appearing in systems with frictional isolation during numerical simulations. Meanwhile, a severe state of damage was clearly visible for the system without isolation.


2000 ◽  
Author(s):  
Subramanya Uppala ◽  
Robert X. Gao ◽  
Scott Cowan ◽  
K. Francis Lee

Abstract The strength and stability of the lumbar spine are determined not only by the bone and muscles, but also by the visco-elastic structures and the interplay between the different components of the spine, such as ligaments, capsules, annulus fibrosis, and articular cartilage. In this paper we present a non-linear three-dimensional Finite Element model of the lumbar spine. Specifically, a three-dimensional FE model of the L4-5 one-motion segment/2 vertebrae was developed. The cortical shell and the cancellous bone of the vertebral body were modeled as 3D isoparametric eight-nodal elements. Finite element models of spinal injuries with fixation devices are also developed. The deformations across the different sections of the spine are observed under the application of axial compression, flexion/extension, and lateral bending. The developed FE models provided input to both the fixture design and experimental studies.


Sign in / Sign up

Export Citation Format

Share Document