Experimental Investigation of a New Grid Cathode Design Method in Electrochemical Machining

Author(s):  
Lu Yonghua ◽  
Zhao Dongbiao ◽  
Liu Kai

This paper focuses on the grid cathode design in electrochemical machining (ECM) in order to develop a new cathode design method for realizing a breakthrough: one cathode can produce different workpieces with different profiles. Three types of square cells, 2.5 mm × 2.5 mm, 3 mm × 3 mm, and 4 mm × 4 mm in size and three types of circular cells, with diameters of 1.5, 2.0, and 2.5 mm are utilized to construct the plane, slant, and blade grid cathode. The material of the cathode and anode is CrNi18Ti9 and the ingredients of the electrolyte are 15% NaCl and 15% NaNO3. A large number of experiments are conducted by using different grid cathodes to analyze the effects of the shape and size of the grid cell on the machining process. In addition, we compare the workpiece quality and machining error between using the grid cathode and the unitary cathode and discuss the reasons for the errors in order to obtain a better surface quality of the workpiece. Our research supports the conclusions that the grid cathode can be used to manufacture workpieces with complex shapes, the workpiece quality is better if the square cell is smaller and, for the same equivalent area, the circular grid cathode produces a better quality workpiece than the square grid cathode.

2010 ◽  
Vol 97-101 ◽  
pp. 3583-3586 ◽  
Author(s):  
Zhi Yong Li ◽  
Hua Ji

Cathode design is a difficult problem must be faced and solved in electrochemical machining (ECM). In ECM process, various parameters, such as applied voltage, current density, gap distribution, machining rate and electrolyte composition and concentration, can affect ECM machining process and therefore cathode design. Among all these machining parameters, gap distribution is the most vital. Regard some type of aero-engine compressor blade as research object, this paper concentrates on the effects of the normal gap distribution of 2-dimension and 3-dimension on cathode design based on the cathode design method of , moreover the errors between two and three dimension normal gap also can be compared and analyzed in detail. To verify the accuracy of the designed cathode, the machining experiments were conducted on an industrial scale ECM machine and the experimental results demonstrates that the cathode designed utilizing 3-dimension normal gap exhibits more machining accuracy and therefore valuable.


2013 ◽  
Vol 339 ◽  
pp. 489-494 ◽  
Author(s):  
Ying Xiang ◽  
Rong Mo ◽  
Neng Wan ◽  
Hu Qiao

The simulation and optimization of electrochemical machining is an important means to improve processing quality. However, the fragmented nature of geometric modeling and numerical analysis model, restricts the application proportion. Aiming at this problem, it is refined that the scientific problem of coordination modeling between CAD and CAE based isogeometric method. In this paper, the unified model is established based NURBS basis functions to solve the problems that the geometric parameterization and the infliction of boundary conditions. And the optimization efficiency is promoted by improved optimization model using the convex hull characteristic of NURBS basis function. At last, a confluent design method is realized for the blade electrochemical machining process.


Author(s):  
Lingguo Yu ◽  
Dong Zhu ◽  
Yujun Yang ◽  
Jibin Zhao

Cathode design plays an important role in the electrochemical machining of aero engine blades and is a core issue influencing machining accuracy. Precision electrochemical machining of the leading edge of a twisted blade is particularly difficult. To improve the electrochemical machining accuracy of the leading edge, this article deals with cathode design by optimizing the design plane based on the three-dimensional potential distribution in the inter-electrode gap. A mathematical model is established according to the electrochemical machining shaping law, and the formation of the blade leading edge is simulated using ANSYS. The simulation results show that the blade leading-edge profile obtained with the optimized planar cathode is more consistent with the blade model profile. The optimized planar cathode and a non-optimized planar cathode are designed and a series of corresponding electrochemical machining experiments is carried out. The experiments show that the electrochemical machining process is stable and that the surface quality near the leading edge of the samples is slightly better than that of the body surface. Compared with the non-optimized planar cathode, the allowance difference at the leading-edge vertex is decreased by 0.062 mm. Using the optimized planar cathode allows fabrication of a workpiece whose shape is similar to that of the designed twisted blade.


1995 ◽  
Vol 50 (17) ◽  
pp. 2679-2689 ◽  
Author(s):  
Yuming Zhou ◽  
Jeffrey J. Derby

2007 ◽  
Vol 40 (18) ◽  
pp. 475-480
Author(s):  
Laurentiu SLATINEANU ◽  
Oana DODUN ◽  
Loredana SANTO ◽  
Margareta COTEATA ◽  
Adriana MUNTEANU

2013 ◽  
Vol 371 ◽  
pp. 431-435 ◽  
Author(s):  
Claudiu Obreja ◽  
Gheorghe Stan ◽  
Lucian Adrian Mihaila ◽  
Marius Pascu

With a view of increasing the productivity on CNC machine tools one of the main solution is to reduce, as much as possible, the auxiliary time consumed with the set-up and replacement of the tools and work pieces engaged in the machining process. Reducing the total time of the tool changing process by the automatic tool changer system can be also achieved through minimizing the number of movements needed for the actual exchange of the tool, from the tool magazine to the machine spindle (the optimization of the tool changing sequences). This paper presents a new design method based on the tree-graph theory. We consider an existing automatic tool changing system, mounted on the milling and boring machining centre, and by applying the new method we obtain all the possible configurations to minimize the tool changing sequence of the automatic tool changer system. By making use of the method proposed we obtain the tool changing sequences with minimum necessary movements needed to exchange the tool. Reconfiguring an existing machine tool provided with an automatic tool changer system by making use of the proposed method leads to obtaining the smallest changing time and thus high productivity.


Sign in / Sign up

Export Citation Format

Share Document