electrochemical machining
Recently Published Documents


TOTAL DOCUMENTS

1298
(FIVE YEARS 314)

H-INDEX

42
(FIVE YEARS 6)

Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 152
Author(s):  
Albert Wen-Jeng Hsue ◽  
Zih-Yuan Huang

An electrochemical machining (ECM) process for microcavity fabrication with deionized water (DI-water) and an ECM polishing hybrid with alumina powder of 1.0 μm grains on a single micro-EDM machine are proposed. The process adopts tungsten carbide as tool electrode and M-333 tool steel as the mold material. It reveals that employing the 30 μm/min feed rate with 50 mA and 0.2 ms of pulse-width is suitable for DI-water electrochemical machining. The DI-water ECM process can achieve an excellent surface roughness at Ra 0.169 µm on a semispherical round cavity. Combining the ECM with hybrid polishing with the alumina powder can achieve a better profile for a much deeper cavity than pure electrolytic discharge machining. The hybrid ECM polishing can efficiently finish a micro square insert of 0.6 mm length at 64 μm depth. Such ECM milling can achieve an S-shaped microchannel of radius 1.0 mm and a slot of 1.0 × 0.5 mm2 with 110 μm depth, demonstrating its feasibility and the surface integrity with accurate profile and roughness of Ra 0.227 μm. This study provides a cost-effective scheme for micro mold fabrication with a conventional micro-EDM machine tool and an intuitive and convenient optional process. However, some micro-electrical discharges occurred due to the breakdown of insulation, which creates micro craters on the surface of the parts.


2022 ◽  
Author(s):  
Abhijeet Sethi ◽  
Biswesh Ranjan Acharya ◽  
Partha Saha

Abstract Nickel-Titanium alloy (Nitinol) is an excellent shape memory alloy (SMA) for Micro electro-mechanical systems (MEMS) particularly in biomedical applications owing to its three excellent features like shape memory effect (SME), superelasticity, and biocompatibility. The fabrication of micro features on Nitinol SMAs through conventional machining has been challenging due to its temperature-dependent material transformation properties. Micro electrochemical machining (micro-ECM), a nonconventional machining method for conductive material irrespective of strength and hardness has the potential for microfeature fabrication on Nitinol. This study presents the investigation on electrochemical dissolution behavior of Nitinol in different electrolytes for micro-ECM. The influence of electrolytes on the nature of dissolution of Nitinol has been studied by fabricating microchannels in three levels of parameters containing applied voltage and electrolyte concentration. The first three electrolytes were all aqueous neutral electrolytes i.e. sodium chloride (NaCl), sodium nitrate (NaNO3), and sodium bromide (NaBr). For profound analysis of dissolution behavior and its influence on machining performance, potentiodynamic polarization (PDP) tests of Nitinol were performed in aqueous NaCl, aqueous NaNO3, and aqueous NaBr solutions. The PDP tests that are conducted here are cyclic voltammetry (CV) and linear sweep voltammetry (LSV). The three aqueous solutions were utilized for microchannel fabrication in Nitinol through micro ECM in three levels of parameters out of which aqueous NaNO3 was successful in fabricating microchannel. Then nonaqueous electrolyte of ethylene glycol-based NaNO3 has been used to fabricate microchannels with lower depth overcut (DOC), width overcut (WOC), and length overcut (LOC) with respect to aqueous NaNO3 electrolyte.


Micromachines ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 50
Author(s):  
Juchen Zhang ◽  
Shasha Song ◽  
Junsheng Zhang ◽  
Weijie Chang ◽  
Haidong Yang ◽  
...  

Due to its advantages of good surface quality and not being affected by material hardness, electrochemical machining (ECM) is suitable for the machining of blisk, which is known for its hard-to-machine materials and complex shapes. However, because of the unstable processing and low machining quality, conventional linear feeding blisk ECM has difficulty in obtaining a complex structure. To settle this problem, the vibration-assisted ECM method is introduced to machine blisk channels in this paper. To analyze the influence of vibration on the process of ECM, a two-phase flow field model is established based on the RANS k-ε turbulence model, which is suitable for narrow flow field and high flow velocity. The model is coupled with the electric field, the flow field, and the temperature field to form a multi-physics field coupling model. In addition, dynamic simulation is carried out on account of the multi-physics field coupling model and comparative experiments are conducted using the self-developed ECM machine tool. While a shortcut appeared in the contrast experiment, machining with vibration-assisted channel ECM achieved fine machining stability and surface quality. The workpiece obtained by vibration-assisted channel ECM has three narrow and straight channels, with a width of less than 3 mm, an aspect ratio of more than 8, and an average surface roughness Ra in the hub of 0.327 μm. Compared with experimental data, the maximum relative errors of simulation are only 1.05% in channel width and 8.11% in machining current, which indicates that the multi-physics field coupling model is close to machining reality.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7714
Author(s):  
Yong Yang ◽  
Yufeng Wang ◽  
Yujie Gui ◽  
Wenwu Zhang

The fabrication of deep microgrooves has become an issue that needs to be addressed with the introduction of difficult-to-cut materials and ever-increasing stringent quality requirements. However, both laser machining and electrochemical machining could not fulfill the requirements of high machining efficiency and precision with good surface quality. In this paper, laser and shaped tube electrochemical milling (Laser-STEM) were initially employed to fabricate microgrooves. The mechanisms of the Laser-STEM process were studied theoretically and experimentally. With the developed experimental setup, the influences of laser power and voltage on the width, depth and bottom surface roughness of the fabricated microgrooves were studied. Results have shown a laser power of less than 6 W could enhance the electrochemical machining rate without forming a deep kerf at the bottom during Laser-STEM. The machining accuracy or localization of electrochemicals could be improved with laser assistance, whilst the laser with a high-power density would deteriorate the surface roughness of the bottom machining area. Experimental results have proved that both the machining efficiency and the machining precision can be enhanced by synchronous laser-assisted STEM, compared with that of pure electrochemical milling. The machining side gap was decreased by 62.5% while using a laser power of 6 W in Laser-STEM. The laser-assistance effects were beneficial to reduce the surface roughness of the microgrooves machined by Laser-STEM, with the proper voltage. A laser power of 3 W was preferred to obtain the smallest surface roughness value. Additionally, the machining efficiency of layer-by-layer Laser-STEM can be improved utilizing a constant layer thickness (CLT) mode, while fabricating microgrooves with a high aspect ratio. Finally, microgrooves with a width of 1.79 mm, a depth of 6.49 mm and a surface roughness of 2.5 μm were successfully fabricated.


Author(s):  
XINDI WANG ◽  
Ningsong Qu

Abstract For additive manufacturing (AM) processes, post-processing is usually needed before application, and electrochemical machining is considered a promising candidate for this purpose. Here, the possibility of using jet electrochemical machining (Jet-ECM) as a semi-finishing post-processing for directed energy deposition (DED) was investigated. The main purpose is to flatten the wave-like surface and improve dimensional accuracy. First, polarization, EIS, and current efficiency measurements were conducted, and it was found that the electrochemical dissolution behaviors of the DED-produced Inconel 718 alloy in NaNO3 solution were isotropic and irrelevant to the DED parameters, which can be attributed to the effect of the passive film. Pa and Pz values from the primary profile were considered more suitable than surface roughness for the characterization of the surface flatness. In the Jet-ECM experiments, the small inter-electrode gaps and high applied voltages were found to be beneficial to surface flattening, while the influence of the scanning speed was not evident. Multiple reciprocating scans could further improve the surface flatness, but most of the improvements were obtained in the first scan. This demonstrates the great potential of Jet-ECM in the post-processing of AM parts, and provide several essential guidelines for further research.


2021 ◽  
Author(s):  
Alain Reiser ◽  
Rolf Schuster ◽  
Ralph Spolenak

To explore a minimal feature size of <100 nm with electrochemical additive manufacturing, we use a strategy originally applied to microscale electrochemical machining for the nanoscale deposition of Co on Au. The concept’s essence is the localization of electrochemical reactions below a probe during polarization with ns-long voltage pulses. As shown, a confinement that exceeds that predicted by a simple model based on the time constant for one-dimensional double layer charging enables a feature size of <50 nm for 2D patterning. We further indirectly verify the potential for out-of-plane deposition by tracking growth curves of high-aspect-ratio deposits. Importantly, we report a lack of anodic stability of Au tips used for patterning. As an inert probe is the prerequisite for controlled structuring, we experimentally verify an increased resistance of Pt probes against degradation. Consequently, the developed setup and processes show a path towards reproducible direct 2D and 3D patterning of metals at the nanoscale.


2021 ◽  
Vol 2131 (4) ◽  
pp. 042012
Author(s):  
S Vasilevskaya ◽  
Yu Nikitin

Abstract The article considers the problem of forming the deep holes of small diameter by using the combined electro-erosive and electrochemical machining based on the electrochemical and electro-erosive processes. The approach to setting the mode parameters during piercing the deep holes with a diameter of less than 1 mm is suggested. The approach takes into consideration the influence of hydrodynamic losses in the inter-electrode gap on the limitation of the mode parameters of the electrochemical and electro-erosive components in the combined processing. It also takes into account the interrelation between the magnitude of the inter-electrode gap and the linear velocities of the removal of the processed material in each of the components during the combined processing. The validity of the approach to setting the mode parameters in the combined electro-erosive -electrochemical processing during piercing the deep holes with a diameter from 0.3 mm to 1 mm in the range of the inter-electrode gap from 0.025 mm to 1 mm is experimentally confirmed.


Sign in / Sign up

Export Citation Format

Share Document