Observability and Distinguishability Properties and Stability of Arbitrarily Fast Switched Systems

Author(s):  
Najah F. Jasim

This paper addresses sufficient conditions for asymptotic stability of classes of nonlinear switched systems with external disturbances and arbitrarily fast switching signals. It is shown that asymptotic stability of such systems can be guaranteed if each subsystem satisfies certain variants of observability or 0-distinguishability properties. In view of this result, further extensions of LaSalle stability theorem to nonlinear switched systems with arbitrary switching can be obtained based on these properties. Moreover, the main theorems of this paper provide useful tools for achieving asymptotic stability of dynamic systems undergoing Zeno switching.

2013 ◽  
Vol 61 (3) ◽  
pp. 547-555 ◽  
Author(s):  
J. Klamka ◽  
A. Czornik ◽  
M. Niezabitowski

Abstract The study of properties of switched and hybrid systems gives rise to a number of interesting and challenging mathematical problems. This paper aims to briefly survey recent results on stability and controllability of switched linear systems. First, the stability analysis for switched systems is reviewed. We focus on the stability analysis for switched linear systems under arbitrary switching, and we highlight necessary and sufficient conditions for asymptotic stability. After that, we review the controllability results.


Author(s):  
Aysegul Kivilcim ◽  
Ozkan Karabacak ◽  
Rafal Wisniewski

This paper presents sufficient conditions for almost global stability of nonlinear switched systems consisting of both stable and unstable subsystems. Techniques from the stability analysis of switched systems have been combined with the multiple Lyapunov density approach - recently proposed by the authors for the almost global stability of nonlinear switched systems composed of stable subsystems. By using slow switching for stable subsystems and fast switching for unstable subsystems lower and upper bounds for mode-dependent average dwell times are obtained. In addition to that, by allowing each subsystem to perform slow switching and using some restrictions on total operation time of unstable subsystems and stable subsystems, we have obtained a lower bound for an average dwell time.


2013 ◽  
Vol 61 (2) ◽  
pp. 349-352
Author(s):  
T. Kaczorek

Abstract The asymptotic stability of positive fractional switched continuous-time linear systems for any switching is addressed. Simple sufficient conditions for the asymptotic stability of the positive fractional systems are established. It is shown that the positive fractional switched systems are asymptotically stable for any switchings if the sum of entries of every column of the matrices of all subsystems is negative.


2016 ◽  
Vol 40 (4) ◽  
pp. 1082-1091 ◽  
Author(s):  
Junqi Yang ◽  
Yantao Chen ◽  
Zheng Zheng ◽  
Wei Qian

This paper discusses the issue of the continuous state estimation for a class of uncertain nonlinear switched systems under the two cases of both average dwell time and mode-dependent average dwell time. A robust and adaptive switched observer is developed such that the states of an original nonlinear switched system can be asymptotically estimated, where the Lipschitz constant of the nonlinear term may be unknown since the designed adaptation law can adaptively adjust it. Based on the feasible solution of an optimization problem with a linear matrix inequality constraint, the observer gain matrices are obtained and guarantee the existence of a robust switched observer. Meanwhile, the switching signals are designed such that the observer error dynamics is globally uniformly exponentially stable, and the sufficient conditions of the existence of a robust sliding-mode switched observer are derived. Finally, the effectiveness of the proposed approaches is illustrated by a numerical example and switched Rössler chaotic dynamics.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Peng Li ◽  
Xiaodi Li ◽  
Jinde Cao

This paper studies the input-to-state stability (ISS) of nonlinear switched systems. By using Lyapunov method involving indefinite derivative and average dwell-time (ADT) method, some sufficient conditions for ISS are obtained. In our approach, the time-derivative of the Lyapunov function is not necessarily negative definite and that allows wider applications than existing results in the literature. Examples are provided to illustrate the applications and advantages of our general results and the proposed approach.


1969 ◽  
Vol 36 (2) ◽  
pp. 212-216 ◽  
Author(s):  
J. R. Dickerson ◽  
T. K. Caughey

A Lyapunov-type approach is used to establish sufficient conditions guaranteeing the asymptotic stability of a class of partial differential equations with parametric excitation.


Author(s):  
Aysegul Kıvılcım ◽  
Ozkan Karabacak ◽  
Rafael Wisniewski

One of the notable temporal properties of dynamical systems is that a set of initial states leads the solutions to reach desired states avoiding a predetermined unsafe set.This property, that we call safe reachability has been studied in literature for autonomous systems using Barrier functionand Barrier densities [1]. In this paper, we generalize a sufficient condition for safe reachability of autonomous systemto switched systems under arbitrary switching signals. The condition relies upon the existence of a common Barrier density function for each subsystem. We apply the condition using the sum of squares method together with Putinar Positivstellensatz.


1967 ◽  
Vol 34 (3) ◽  
pp. 709-713 ◽  
Author(s):  
T. K. Caughey ◽  
J. R. Dickerson

A Lyapunov-type approach is used to establish sufficient conditions guaranteeing the asymptotic stability of a class of linear dynamic systems with bounded, narrow-band parametric excitation.


Sign in / Sign up

Export Citation Format

Share Document