Simulation Methods for Guided Wave-Based Structural Health Monitoring: A Review

2015 ◽  
Vol 67 (1) ◽  
Author(s):  
C. Willberg ◽  
S. Duczek ◽  
J. M. Vivar-Perez ◽  
Z. A. B. Ahmad

This paper reviews the state-of-the-art in numerical wave propagation analysis. The main focus in that regard is on guided wave-based structural health monitoring (SHM) applications. A brief introduction to SHM and SHM-related problems is given, and various numerical methods are then discussed and assessed with respect to their capability of simulating guided wave propagation phenomena. A detailed evaluation of the following methods is compiled: (i) analytical methods, (ii) semi-analytical methods, (iii) the local interaction simulation approach (LISA), (iv) finite element methods (FEMs), and (v) miscellaneous methods such as mass–spring lattice models (MSLMs), boundary element methods (BEMs), and fictitious domain methods. In the framework of the FEM, both time and frequency domain approaches are covered, and the advantages of using high order shape functions are also examined.

2019 ◽  
Vol 9 (21) ◽  
pp. 4600 ◽  
Author(s):  
Yevgeniya Lugovtsova ◽  
Jannis Bulling ◽  
Christian Boller ◽  
Jens Prager

Guided waves (GW) are of great interest for non-destructive testing (NDT) and structural health monitoring (SHM) of engineering structures such as for oil and gas pipelines, rails, aircraft components, adhesive bonds and possibly much more. Development of a technique based on GWs requires careful understanding obtained through modelling and analysis of wave propagation and mode-damage interaction due to the dispersion and multimodal character of GWs. The Scaled Boundary Finite Element Method (SBFEM) is a suitable numerical approach for this purpose allowing calculation of dispersion curves, mode shapes and GW propagation analysis. In this article, the SBFEM is used to analyse wave propagation in a plate consisting of an isotropic aluminium layer bonded as a hybrid to an anisotropic carbon fibre reinforced plastics layer. This hybrid composite corresponds to one of those considered in a Type III composite pressure vessel used for storing gases, e.g., hydrogen in automotive and aerospace applications. The results show that most of the wave energy can be concentrated in a certain layer depending on the mode used, and by that damage present in this layer can be detected. The results obtained help to understand the wave propagation in multi-layered structures and are important for further development of NDT and SHM for engineering structures consisting of multiple layers.


2017 ◽  
Vol 29 (5) ◽  
pp. 969-985 ◽  
Author(s):  
Guoyi Li ◽  
Rajesh Kumar Neerukatti ◽  
Aditi Chattopadhyay

Composite materials are used in many advanced engineering applications because of high specific strength and stiffness. Their complex damage mechanisms and failure modes, however, are still not well-understood, thus challenging the application safety. Ultrasonic guided waves are promising structural health monitoring tools used to determine the operational safety of composite materials. In this article, a fully coupled numerical simulation model is used to study wave propagation and dispersion in composites under varying sensor locations, propagating orientations, excitation frequencies, and damage locations. The model is based on the local interaction simulation approaches/sharp interface model wherein output sensor signals are processed using the matching pursuit decomposition algorithm to study the signal features in the time–frequency domain. The changes in signals due to varying damage locations with respect to the through-thickness direction are studied under anti-symmetrical and symmetrical excitation scenarios. The results show that the signal from symmetric excitation is more sensitive to the damage location, while the signal from anti-symmetric excitation is less dispersive. It indicates that comprising effective feature extraction technique with the accurate physics-based numerical simulation model can be implemented to develop robust structural health monitoring framework for composites.


2014 ◽  
Vol 553 ◽  
pp. 687-692 ◽  
Author(s):  
Ying Wang ◽  
Hong Hao

Among many structural health monitoring (SHM) methods, guided wave (GW) based method has been found as an effective and efficient way to detect incipient damages. In comparison with other widely used SHM methods, it can propagate in a relatively long range and be sensitive to small damages. Proper use of this technique requires good knowledge of the effects of damage on the wave characteristics. This needs accurate and computationally efficient modeling of guide wave propagation in structures. A number of different numerical computational techniques have been developed for the analysis of wave propagation in a structure. Among them, Spectral Element Method (SEM) has been proposed as an efficient simulation technique. This paper will focus on the application of GW method and SEM in structural health monitoring. The GW experiments on several typical structures will be introduced first. Then, the modeling techniques by using SEM are discussed.


2016 ◽  
Vol 90 ◽  
pp. 787-794 ◽  
Author(s):  
Mohammad H. Sherafat ◽  
Robin Guitel ◽  
Nicolas Quaegebeur ◽  
Pascal Hubert ◽  
Larry Lessard ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Wang Ziping ◽  
Xiong Xiqiang ◽  
Qian Lei ◽  
Wang Jiatao ◽  
Fei Yue ◽  
...  

In the application of Structural Health Monitoring (SHM) methods and related technologies, the transducer used for electroacoustic conversion has gradually become a key component of SHM systems because of its unique function of transmitting structural safety information. By comparing and analyzing the health and safety of large-scale structures, the related theories and methods of Structural Health Monitoring (SHM) based on ultrasonic guided waves are studied. The key technologies and research status of the interdigital guided wave transducer arrays which used for structural damage detection are introduced. The application fields of interdigital transducers are summarized. The key technical and scientific problems solved by IDT for Structural Damage Monitoring (SHM) are presented. Finally, the development of IDT technology and this research project are summarised.


Sign in / Sign up

Export Citation Format

Share Document