Enhancement of the Analyte Mass Transport in a Microfluidic Biosensor by Deformation of Fluid Flow and Electrothermal Force

Author(s):  
Marwa Selmi ◽  
Randa Khemiri ◽  
Fraj Echouchene ◽  
Hafedh Belmabrouk

Fluid deformations around a cylinder combined with an applied electric field are used to enhance the kinetics rate and the response time of heterogeneous immunosensors in microfluidic systems. The insertion of an obstacle in the microchannel as well as the application an applied electric field are used to change the fluid motion topology that improves the transport of diffusion-limited proteins. The response time is affected by various parameters such as the inlet flow velocity, the initial analyte concentration and the obstacle position. The effects of the parameters related to the kinetics reaction on the sensitivity and the performance of the biosensor have been studied numerically. Numerical results reveal that an appropriate choice of the inlet analyte and inlet flow velocity with applied electric field may reduce considerably the response time and enhance the microfluidic sensor performance.

Volume 3 ◽  
2004 ◽  
Author(s):  
Tov Elperin ◽  
Andrew Fominykh ◽  
Zakhar Orenbakh

In this study we considered mass transfer in a binary system comprising a stationary fluid dielectric sphere embedded into an immiscible dielectric liquid under the influence of an alternating electric field. Fluid sphere is assumed to be solvent-saturated so that an internal resistance to mass transfer can be neglected. Mass flux is directed from a fluid sphere to a host medium, and the applied electric field causes a creeping flow around the sphere. Droplet deformation under the influence of the electric field is neglected. The problem is solved in the approximations of a thin concentration boundary layer and finite dilution of a solute in the solvent. The thermodynamic parameters of a system are assumed constant. The nonlinear partial parabolic differential equation of convective diffusion is solved by means of a generalized similarity transformation, and the solution is obtained in a closed analytical form for all frequencies of the applied electric field. The rates of mass transfer are calculated for both directions of fluid motion — from the poles to equator and from the equator to the poles. Numerical calculations show essential (by a factor of 2–3) enhancement of the rate of mass transfer in water droplet–benzonitrile and droplet of carbontetrachloride–glycerol systems under the influence of electric field for a stagnant droplet. The asymptotics of the obtained solutions are discussed.


2018 ◽  
Vol 23 ◽  
pp. 1-7
Author(s):  
Rabi Noori Hammudi ◽  
Sudad Salman Al-Bassam ◽  
Rawa Khalil Ibrahim ◽  
Aseel Ibrahim Mahmood ◽  
Peter Kopčanský ◽  
...  

In this work we have studied the electro-optical effect of two types of ferronematic nanoparticles. The first sample doped with magnetic material Fe3O4 and the second sample doped with a ferroelectric material SbSI. The difference in the two types of material that has been vaccinated led to different values of electro-optic properties because of the different susceptibility of materials. We have noticed that the material SbSI was more responsive to the applied electric field due to the nature of the constituent material (electric material) than the Fe3O4 ferromagnetic. The response time for the material SbSI is less than the response time of the ferromagnetic Fe3O4, that led to make the material SbSI best in the optical switch applications.


2008 ◽  
Vol 1093 ◽  
Author(s):  
Ricardo Cabeca ◽  
D. M.F. Prazeres ◽  
V. Chu ◽  
J. P. Conde

AbstractWe present the design of two biointerfaces on a SiO2 substrate for single stranded DNA (ssDNA) immobilization using either covalent grafting or electrostatic adsorption. The influence of the type of biointerface on the rate of diffusion-limited hybridization reaction with complementary ssDNA from a solution is studied. Patterning of the biointerfacefunctionalization layers and the scaling down of the reaction volumes to µL range is demonstrated. The use of externally applied electric field pulses is shown to accelerate the hybridization reaction kinetics to the sub-ms time scale.


1972 ◽  
Vol 33 (C1) ◽  
pp. C1-63-C1-67 ◽  
Author(s):  
M. BERTOLOTTI ◽  
B. DAINO ◽  
P. Di PORTO ◽  
F. SCUDIERI ◽  
D. SETTE

2012 ◽  
Vol 15 (2-3) ◽  
pp. 127-139
Author(s):  
Tung Tran Anh ◽  
Laurent Berquez ◽  
Laurent Boudou ◽  
Juan Martinez-Vega ◽  
Alain Lacarnoy

2008 ◽  
Vol 75 (1) ◽  
Author(s):  
Q. Li ◽  
Y. H. Chen

A semi-permeable interface crack in infinite elastic dielectric/piezoelectric bimaterials under combined electric and mechanical loading is studied by using the Stroh complex variable theory. Attention is focused on the influence induced from the permittivity of the medium inside the crack gap on the near-tip singularity and on the energy release rate (ERR). Thirty five kinds of such bimaterials are considered, which are constructed by five kinds of elastic dielectrics and seven kinds of piezoelectrics, respectively. Numerical results for the interface crack tip singularities are calculated. We demonstrate that, whatever the dielectric phase is much softer or much harder than the piezoelectric phase, the structure of the singular field near the semi-permeable interface crack tip in such bimaterials always consists of the singularity r−1∕2 and a pair of oscillatory singularities r−1∕2±iε. Calculated values of the oscillatory index ε for the 35 kinds of bimaterials are presented in tables, which are always within the range between 0.046 and 0.088. Energy analyses for five kinds of such bimaterials constructed by PZT-4 and the five kinds of elastic dielectrics are studied in more detail under four different cases: (i) the crack is electrically conducting, (ii) the crack gap is filled with air/vacuum, (iii) the crack gap is filled with silicon oil, and (iv) the crack is electrically impermeable. Detailed comparisons on the variable tendencies of the crack tip ERR against the applied electric field are given under some practical electromechanical loading levels. We conclude that the different values of the permittivity have no influence on the crack tip singularity but have significant influences on the crack tip ERR. We also conclude that the previous investigations under the impermeable crack model are incorrect since the results of the ERR for the impermeable crack show significant discrepancies from those for the semi-permeable crack, whereas the previous investigations under the conducting crack model may be accepted in a tolerant way since the results of the ERR show very small discrepancies from those for the semi-permeable crack, especially when the crack gap is filled with silicon oil. In all cases under consideration the curves of the ERR for silicon oil are more likely tending to those for the conducting crack rather than to those for air or vacuum. Finally, we conclude that the variable tendencies of the ERR against the applied electric field have an interesting load-dependent feature when the applied mechanical loading increases. This feature is due to the nonlinear relation between the normal electric displacement component and the applied electromechanical loadings from a quadratic equation.


The Analyst ◽  
2020 ◽  
Vol 145 (6) ◽  
pp. 2412-2419 ◽  
Author(s):  
Rachel N. Deraney ◽  
Lindsay Schneider ◽  
Anubhav Tripathi

NA extraction and purification utilitzing a microfluidic chip with applied electric field to induce electroosmotic flow opposite the magnetic NA-bound bead mix.


2020 ◽  
Vol 10 (6) ◽  
pp. 780-787
Author(s):  
Hongyue Gao ◽  
Suna Li ◽  
Jicheng Liu ◽  
Wen Zhou ◽  
Fan Xu ◽  
...  

In this paper, we studied the holographic properties of liquid crystal (LC) thin film doped with carbon dots (CDs) which can be used as real-time holographic display screen. The maximum value of diffraction efficiency can reach up to 30% by using a low applied electric field 0.2 V/μm. Holograms in the LC film can be dynamically formed and self-erased. The hologram build-up time and the hologram self-erasure time in the material is fast enough to realize video refresh rate. In addition, the forming process of hologram was studied. The holographic diffraction efficiency was measured depending on the intensity of recording light, applied electric field, the intensity of readout light, and readout light polarization direction. Triple enhancement of the diffraction efficiency value by the modulation of voltage under the condition of low recording energy is presented. Therefore, we develop an easy way to obtain real-time dynamic holographic red, green and blue displays with high diffraction efficiency, which allow the LC film doped with CDs to be used as a holographic 3D display screen.


Sign in / Sign up

Export Citation Format

Share Document