Comparison between Ferromagnetic and Ferroelectric Optical Switch Devices in Terms of the Response to the Electric Field

2018 ◽  
Vol 23 ◽  
pp. 1-7
Author(s):  
Rabi Noori Hammudi ◽  
Sudad Salman Al-Bassam ◽  
Rawa Khalil Ibrahim ◽  
Aseel Ibrahim Mahmood ◽  
Peter Kopčanský ◽  
...  

In this work we have studied the electro-optical effect of two types of ferronematic nanoparticles. The first sample doped with magnetic material Fe3O4 and the second sample doped with a ferroelectric material SbSI. The difference in the two types of material that has been vaccinated led to different values of electro-optic properties because of the different susceptibility of materials. We have noticed that the material SbSI was more responsive to the applied electric field due to the nature of the constituent material (electric material) than the Fe3O4 ferromagnetic. The response time for the material SbSI is less than the response time of the ferromagnetic Fe3O4, that led to make the material SbSI best in the optical switch applications.

2003 ◽  
Vol 784 ◽  
Author(s):  
A. K. Tagantsev ◽  
P. Muralt ◽  
J. Fousek

ABSTRACTA simple theory for the shape of the piezoelectric hysteresis loops (piezoelectric coefficient d vs. applied electric field E) is developed for the case of non-ferroelelastic 180° switching in ferroelectrics. The theory provides explanations for specific features of piezoelectric hysteresis loops, which have been observed in single crystals, thin films and in ceramics in particular. The piezoelectric coefficient may show a “hump”, i.e. when E decreases from the tip of the loop down to zero, d passes through a maximum, and a “nose”, i.e. a self-crossing of the loop close to its tips. The theory also explains the difference in the coercive fields seen in the polarization and piezoelectric loops.


2003 ◽  
Vol 17 (09) ◽  
pp. 347-354 ◽  
Author(s):  
LI ZHANG ◽  
HONG-JING XIE

By using the compact density matrix approach, the electro-optic effect (EOE) in a semi-parabolic quantum well (QW) with an applied electric field has been theoretically investigated. Via a variant of displacement harmonic oscillation, the exact electronic states in the semi-parabolic QW with an applied electric field are obtained. Numerical results on typical GaAs material reveal that the electro-optic effect nearly linearly increases with the increasing of magnitude of the electric field, but it monotonously decreases with the increasing of confining potential frequency of the semi-parabolic QW. The EOE in the model investigated is 102 times larger than that in the symmetric parabolic QW under the same electric field and the same frequency of parabolic confining potential, which is due to the self-asymmetry of the system and the electric field effect.


2015 ◽  
Vol 08 (03) ◽  
pp. 1540008 ◽  
Author(s):  
Xiaofang Zhao ◽  
A. K. Soh

The temporal evolution of domain structure and its piezoelectric behavior of ferroelectric material BaTiO 3 during the transition process from rhombohedral to tetragonal phase under an applied electric field have been studied by employing Landau–Ginzburg theory and the phase-field method. The results obtained show that, during the transformation process, the intermediate phase was monoclinic MA phase, and several peak values of piezoelectric coefficient appeared at the stage where obvious change of domain pattern occurred. In addition, by comparing the cases of applied electric field with different frequencies, it was found that the maximum piezoelectric coefficient obtained decreased with increasing frequency value. These results are of great significance in tuning the properties of engineering domains in ferroelectrics, and could provide more fundamentals to the design of ferroelectric devices.


2009 ◽  
Author(s):  
Wei-guo Liu ◽  
Ying-xue Xi ◽  
Hui-qing Fan ◽  
Chen Yang ◽  
Xiao-ling Niu

Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5435
Author(s):  
Marek Izdebski

This paper presents precise measurements of the temperature dependencies of the quadratic electro-optic coefficients g1111−g1122 and ne3g3333−no3g1133 in KH2PO4 crystals. In addition to traditional electro-optic coefficients describing changes in the function of an applied electric field, intrinsic coefficients, defined in terms of induced polarization, are also considered. Both intrinsic coefficients decrease with increases in temperature, but the relative temperature changes are of different orders of magnitude: 10−4 and 10−3 K−1. A Sénarmont-type setup was used for the electro-optic measurements. To achieve the best accuracy, a new approach was developed, in which, instead of using only one specific point on the modulator’s transmission characteristic, the operating point is changed during the measurements.


1999 ◽  
Vol 597 ◽  
Author(s):  
B. H. Hoerman ◽  
J. C. Majewski ◽  
B. M. Nichols ◽  
A. Teren ◽  
B. W. Wessels

AbstractThe dynamic response of the electro-optic coefficients and the electronic polarizability for epitaxial thin films of KnbO3 and BaTiO3 are measured. For these two systems a logarithmic dependence of the electro-optic response and the polarization on time was observed after removal of an applied electric field. The dynamic response of the electro-optic effect and the polarization of the films are attributed to the same physical mechanism, which we associate with the dynamic response of ferroelectric nanodomains.


Author(s):  
Marwa Selmi ◽  
Randa Khemiri ◽  
Fraj Echouchene ◽  
Hafedh Belmabrouk

Fluid deformations around a cylinder combined with an applied electric field are used to enhance the kinetics rate and the response time of heterogeneous immunosensors in microfluidic systems. The insertion of an obstacle in the microchannel as well as the application an applied electric field are used to change the fluid motion topology that improves the transport of diffusion-limited proteins. The response time is affected by various parameters such as the inlet flow velocity, the initial analyte concentration and the obstacle position. The effects of the parameters related to the kinetics reaction on the sensitivity and the performance of the biosensor have been studied numerically. Numerical results reveal that an appropriate choice of the inlet analyte and inlet flow velocity with applied electric field may reduce considerably the response time and enhance the microfluidic sensor performance.


1972 ◽  
Vol 33 (C1) ◽  
pp. C1-63-C1-67 ◽  
Author(s):  
M. BERTOLOTTI ◽  
B. DAINO ◽  
P. Di PORTO ◽  
F. SCUDIERI ◽  
D. SETTE

Sign in / Sign up

Export Citation Format

Share Document